
Copyright ©2008, Google Inc

Python Dependency Injection

Alex Martelli (aleax@google.com)

http://www.aleax.it/yt_pydi.pdf

The "levels" of this talk

2

Shu

Ha

Ri

Py DP

("Retain")

("Detach")

("Transcend")
∞ ∞

3

The novice goes astray and says,

"The Art failed me."

The master goes astray and says,

"I failed the Art."

Dependency Injection DP

4

Name: "Dependency Injection"
Forces: an object depends on other
concrete objects which it instantiates (or
accesses as singletons, ...)

we may want to control dependencies for
all the usual good reasons
in particular, unit-testing may require
mocking otherwise-concrete objects

we'll see examples & alternative solutions
throughout the rest of this talk

A simple scheduler
class ss(object):
 def __init__(self):
 self.i = itertools.count().next
 self.q = somemodule.PriorityQueue()
 def AddEvent(self, when, c, *a, **k):
 self.q.push((when, self.i(), c, a, k))
 def Run(self):
 while self.q:
 when, n, c, a, k = self.q.pop()
 time.sleep(when - time.time())
 c(*a, **k)

5

(A "side note")
class PriorityQueue(object):
 def __init__(self):
 self.l = []
 def __len__(self):
 return len(self.l)
 def push(self, obj):
 heapq.heappush(self.l, obj)
 def pop(self):
 return heapq.heappop(self.l)

6

Fine, but...
...how do you test ss without long waits?
...how do you integrate it with other
subsystems' event loops/simulations?

The core issue is that ss "concretely
depends" on some specific objects (here,
callables time.sleep and time.time).
We'll discuss 3 approaches to solve this...:

1. the Template Method DP
2. "Monkey Patching"
3. the Dependency Injection DP

7

The Template Method DP
One classic answer ("Template Method" DP):

 ...
 when, n, c, a, k = self.q.pop()
 self.WaitFor(when)
 c(*a, **k)
 ...
 def WaitFor(self, when):
 time.sleep(when - time.time())

(to customize: subclass ss, override WaitFor)

8

TM DP example
class sq(ss):
 def __init__(self):
 ss.__init__(self)
 ss.mtq = Queue.Queue()
 def WaitFor(self, when):
 try:
 while when>time.time():
 c, a, k = self.mtq.get(true,
 time.time() - when)
 c(*a, **k)
 except Queue.Empty:
 return

9

Some issues with TM
inheritance gives strong, inflexible coupling

a customized-scheduler has complex,
specialized extra logic

far from ideal for either unit-testing or
simulated-time system testing

e.g.: if another subsystem makes a
scheduler, how does it know to make a
test-scheduler instance vs a simple-
scheduler one? (shades of recursion...)

multiple integrations even harder than need
be (but, there's no magic bullet for those!-)

10

Monkey-patching...
import ss
class faker(object): pass
fake = faker()
ss.time = fake
fake.sleep = ...
fake.time = ...

11

extremely handy in emergencies, but...
...too often abused for NON-emergencies!

"gives dynamic languages a bad name"!-)
subtle, hidden "communication" via secret,
obscure pathways (explicit is better!-)

The general DI idea
class ss(object):
 def __init__(self, tm=time.time,
 sl=time.sleep):
 self.tm = tm
 self.sl = sl
 ...
 self.sl(when - self.tm())

12

a known use: standard library sched module!

DI makes it easy to mock
class faketime(object):
 def __init__(self, t=0.0): self.t = t
 def time(self): return self.t
 def sleep(self, t): self.t += t

f = faketime()
s = ss(f.time, f.sleep)
...

13

DI/TM orthogonality
Not at all mutually exclusive...:
class ss(object):
 def __init__(self, tm=time.time,
 sl=time.sleep):
 ...
 def WaitFor(self, when):
 self.sl(when-self.tm())
then may use either injection, or subclassing and
overriding, (or both!-), for testing, integration, &c

14

DI design-choice details
inject by constructor (as shown)

with, or without, default dep. values?
ensure just-made instance is consistent
choose how "visible" to make the inject...

inject by setter
automatic in Python (use non-_ names)
very flexible (sometimes too much;-)

"inject by interface" (AKA "IoC type 1")
not very relevant to Python

DI: by code or by config-file/flags?

15

DI and factories
class ts(object):
 ...
 def Delegate(self, c, a, k):
 q = Queue.Queue()
 def f(): q.put(c(*a,**k))
 t = threading.Thread(target=f)
 t.start()
 return q

each call to Delegate needs a new Queue and a
new Thread; how do we DI these objects...?
easy solution: inject factories for them!

16

DI and factories
class ts(object):
 def __init__(self, q=Queue.Queue,
 t=threading.Thread):
 self.q = q
 self.t = t
 ...
 def Delegate(self, c, a, k):
 q = self.q()
 ...
 t = self.t(target=f)

pretty obvious/trivial solution when each class is
a factory for its instances, of course;-)

17

Questions & Answers

18

Q?
A!

