Modern Python Patterns
and Idioms

http://www.aleax.it/pyconitl5 mppi_en.pdf

Patterns vs Idioms (1)

@ Patterns: a very general term
@ Architecture

@ Design
@ Development
@ Deployment

o ..
@ can nevertheless be technology-specific
@ building architecture w/wooden beams
@ vs bricks
@ vs reinforced concrete

2

Patterns vs Idioms (2)

@ Idioms: a rather specific ferm

@ in natural languages, “a phrase or fixed
expression that has a figurative, or
sometimes literal, meaning” (from Greek
(dloc, "one's own")

@ a distinct style/character (music, art, &c)

@ in artificial languages (for programmin?,
markup, configuration, &c), “a means o

expressing a recurring construct” typical
of the specific language

Today's hottest key patterns

@ are mostly architectural ones
@ for distributed, scalable, reliable systems
@ farther away from coding than DPs are
@ load balancing (inc. the elastic kind)
@ stateless or sticky

@ health checking, traffic splitting
@ canarying, A/B testing, ..
@ microservices (W/REST and/or RPC APIs)
@ caching (esp. the distributed kind)
@ oldie but goldie!-)

Load Balancing

@ all load goes to a single system...
@ ..which balances it across the servers
@ always considering their "health”
@ ? considering their "load" ?
@ maybe adding servers (elastic)

@ ..and removing them when feasible...
@ health checking, traffic splitting
@ canarying, A/B testing, ..
@ ? track "state" (sessions)... ?
@ unequal split x canarying and A/B testing

5

LB in Python

@ txLoadBalancer 1.1.0
@ twisted, norm. stateless, at TCP level
@ scheduling configurabile (a tad of state)
@ ex http://pythondirector.sourceforge.net/
@ http://zquide.zeromgq.org/py:lbbroker

@ "example" (usable) in/for ZeroMQ
3 ..

(L services

@ instead of libraries (always in-process)
@ with HTTP+REST+JSON (or other RPC)
@ better if "clothed” with libraries

@ explode network “"scalability”
@ perhaps with internal load-balancing!-)

@ easier to maintain, upgrade, test, ...

@ can be multi-language (but Python...:-)
@ only likely problem: overhead

@ e.qg: http://qilliam.github.io/

Distributed caching

@ Beaker — dogpile.cache

® memcached

problem #1, always: data freshness

problem #3, sometimes: atomicity issues
problem #4: overhead of distributed comms
@ VS a local cache alternative

o
® problem #2, sometimes: serialization format
o
o

PL progress swallows idioms

@ ..and sometimes patterns too (a fine line!)
@ in BAL/360: BALR rl4, r15 ... BR rl4
@ subroutine-call as an idiom/pattern

@ in ARM: BL address ... MOV pc, Ir
@ dedicated link-register

@ in x86: explicit CALL/RET (using stack)

@ in HLL: explicit/implicit CALL/RETURN
(stack somewhat hidden/parameters too)

Python swallows, too:-)

@ once upon a time, DSU
decorated — [({E)y 3 Tor st 1HFc=]

decorated Tsoisee)

XS | :lesmelile for @ P de@dmated]

@ nowadays, key=... most everywhere

Xs.sort (key=t)

@ ..but not quite everywhere, so DSU still
worth knowing!-)

DSU and heapq

class keyed heapep(olisE NS
def "xmEet, »(Se il S IEITNNEES A
self.Wig [(Keyish, s) Ifopss i1 sced
heapg.heapify(self.h)
self.key = key
deff? leiilie el fils:
returh ffen (sel T .19
def push(self, x).:
decorated = (self.key(x), x)
heapg.heappash (self .h, decorated)
def pop(self):
return heapqg.heappop(self.h) [1]
def peek (self) :

return self# ¢ [0

Python Containers

a long time ago
in a version far, far away,
there were only 1ist, dict, and tuple..

what a journey it has been since!-)

Container Idioms

@ set IS a built-in: are you using it right?

@ and what about other "new" built-ins?
@ frozenset, bytearray, memoryview,

enumerate, reversed, Buffer: i
@ ever used built-in object idiomatically?

® collections has 5 containers obsoleting
("swallowing") many good old idioms

@ and 16 abc's -- even bigger potential!
@ (plus, more abc's -- the numbers module)

Your Honor, I objec:

_ sentined. =0 ENEE

def f (optiome | —yic e uhe e dme:
1f,oplioka Lauss Fsent nelig

X = d.gekias cevEiie

Other Sentinel Pattern variants: +/- Infinity,

EqualsAll, PredicateSatishier decorator...:
def predicafe safEdlm | crMpTeeiriNey)
def wrapper (X) :
LT X 1S+ roeTiesiiic sy g Wil e
return predicate (x)
return wkefiE s

Some Swallowed Idioms

d.setdefault (x, [1) s il s

@ nevermore! use, instead:
= collectTensud@erfanltdl cafbisk)
d[x] .append(y)

@ and for some idioms, generations passed:

1f x.1in cleeselise =il
else: d[x] = 1

=1 + ‘dsgc@se , b))

collections.defaultdict (1nt)
+= 1

collections.Counter (xs)

15

Not just dicts -- I/0, too...

whil e Tiene 5
line = afile.readline ()
15 Fines—— Vet

nevermore! use: for line in afile:

f .= opent(. .5
Ly
finally: E.cloged)

nevermore! use: with open(...) as f:

collections.Counter

@ not just a multiset (though mostly that:-)
@ as it can have zero/negative counts too!

@ e.qg: 'items seen more often in xs than in ys"
= collections.Counter (xs)
a.subtract (collections.Counter (ys))

return (atcollections.Counter()) .keys ()

@ and don't forget .elements and .most common!-)

@ exercise: implement union, intersection, and
symmetric difference, between counter multisets!

>>> Xs = 'tantico 'va la gausiEasc S Eon
S "four score. arGESEi VS ERcS CHalgs
o = collections . Coudr e ass)
pp - T
Counter ({3 alind i1 NeraRin dgsel elaan
'd' 1, N Ay e PR |, S)
>>> a.subtkactilcol lecl feons . CotnteE i yYs))
> 2 >
Counter (: s e
g eyt 0y

g e — 10 e el

— 43

>>> XX = a +vcolle@gEions.CouneEer ')
S>> >
Counter ({ "a" i #4 SEaam Sl oo
>>> XX.Keys ()
['a'['l', 'tl]

collections.deque

@ not just "2-e queue” (though mostly that:-)

@ as it can have constrained length too!

@ perfect for a "ring buffer” ("last n items"):
= collections.deque (iter, maxlen=n)

(itertools.islice can't support negative args!-)

@ caveat for C++ers: general d[x] is O(N), not O(1)!

namedtuple

@ namedtuple: mostly cosmetic, buf,
readability counts!

@ a factory of container types"!

>>> Pl S
collections.namedtuple('Person', 'name
phone email')

>>> x = Persen("Aleset s S ion |
'a@lex'")

PP

Person (name="'Alex', phone='555-5555%",
emall='allex")

>SNy PEREe)
<class & .Person'>

OrderedDict

@ OrderedDict: good, but *take care*!

® bad anti-idiom alas often observed:
® od = collections.OrderedDict (somedict)

@ see why it's totally useless...?
@ and similarly:

>>> collections.OrderedDict (b=1, a=2)
OrderedDict (] ¢ Va 'uEe2) , T ablie Fee s bagre)

must be, instead:
od = OrderedDictEl (b, # 1)

Do you *need® a container?

@ Traditionally, you built up a list with
interesting items, then looped over it for
further processing
mylists =" %S
for rawlitem in contailiner:

1f 1nteresting(rawitem) :

mylist.append (process (rawitem))
fOr X @R @b BT W

@ then, list comprehensions appeared...:
myllist = [prdcesSiit g or = " @ortalner
1f 1nteresting(r)]
for x 1n my.l =S

Turns out you often *don't*!

@ *generator expressions saved us a lot of memory...:
mygenex = i{processi(E) Ferf Y (1n. container
»f Interesting(r))

for x 1n mygenex:

@ ..and the rush to iterators/generators was on!

@ itertools raised it to a craze w/*performance*

@ & cool recipes@ https://docs.python.org/
2/library/itertools.html#recipes

@ generators also begat co-routines
@ w/send and throw methods, yield as an expr
@ then yield from, making asyncio possible

Iterator idioms

"First item > 25" (raise if no item is > 25)
fi1 = nextietfor X, il ISt 11 5ae) 5

Ditto, but, a sentinel of O rather than raising
fi = nexi®i Lo sin 8 5 S 2h), 0)

Is iterator empty?
sentinelfv==2cXx (1 EfE e oy .c])

How many items in iterator?
hmi =sEam (L*TowE in 1ter)

Do remember each such idiom (itertools
too!) advances/consumes the iterator! Cfr
itertools.tee if appropriate...

Duck typing...?

@ once upon a fime...
def workKit>ais
tryie a2 il
except TypeError: raise

..NEVER

1f not msEpnstance (Xt
ralse TypeError

iIsinstance rehabilitated

...thanks to Abstract Base Classes!

so nowadays...:
1f notiiasanstapeesix @ numbc s tinibci)
ralse TypeError K .

8 ..GOOSE typing!

and tomorrow...:

(PEP 3107, 484, ...)

def work(x: numbers.Number): (SWAN typing?)
Note you can still easily get it wrong...

def work(x: int): (CUCKOO ’ryping?-)

Q& A

http://www.aleax.it/pyconitl5 mppi en.pdf

