
©2015 Google -- aleax@google.com

Modern Python Patterns
and Idioms

http://www.aleax.it/pyconit15_mppi_en.pdf

Patterns vs Idioms (1)
Patterns: a very general term

Architecture
Design
Development
Deployment

...
can nevertheless be technology-specific

building architecture w/wooden beams
vs bricks
vs reinforced concrete

2

Patterns vs Idioms (2)
Idioms: a rather specific term

in natural languages, "a phrase or fixed
expression that has a figurative, or
sometimes literal, meaning" (from Greek
ἴδιος, "one's own")
a distinct style/character (music, art, &c)
in artificial languages (for programming,
markup, configuration, &c), "a means of
expressing a recurring construct" typical
of the specific language

3

Today's hottest key patterns
are mostly architectural ones

for distributed, scalable, reliable systems
farther away from coding than DPs are

load balancing (inc. the elastic kind)
stateless or sticky
health checking, traffic splitting

canarying, A/B testing, ...
microservices (w/REST and/or RPC APIs)
caching (esp. the distributed kind)

oldie but goldie!-)

4

Load Balancing
all load goes to a single system...

...which balances it across the servers
always considering their "health"

? considering their "load" ?
maybe adding servers (elastic)

...and removing them when feasible...
health checking, traffic splitting

canarying, A/B testing, ...
? track "state" (sessions)... ?

unequal split x canarying and A/B testing

5

LB in Python
txLoadBalancer 1.1.0

twisted, norm. stateless, at TCP level
scheduling configurabile (a tad of state)
ex http://pythondirector.sourceforge.net/

http://zguide.zeromq.org/py:lbbroker
"example" (usable) in/for ZeroMQ

...

6

μservices
instead of libraries (always in-process)

with HTTP+REST+JSON (or other RPC)
better if "clothed" with libraries

explode network "scalability"
perhaps with internal load-balancing!-)

easier to maintain, upgrade, test, ...
can be multi-language (but Python...:-)
only likely problem: overhead
e.g: http://gilliam.github.io/

7

Distributed caching
Beaker → dogpile.cache
memcached

problem #1, always: data freshness
problem #2, sometimes: serialization format
problem #3, sometimes: atomicity issues
problem #4: overhead of distributed comms

vs a local cache alternative

8

PL progress swallows idioms
...and sometimes patterns too (a fine line!)

in BAL/360: BALR r14, r15 ... BR r14
subroutine-call as an idiom/pattern

in ARM: BL address ... MOV pc, lr
dedicated link-register

in x86: explicit CALL/RET (using stack)
in HLL: explicit/implicit CALL/RETURN
(stack somewhat hidden/parameters too)

9

Python swallows, too:-)
once upon a time, DSU
decorated = [(f(x),x) for x in xs]
decorated.sort()
xs[:] = [x for _, x in decorated]
nowadays, key=... most everywhere
xs.sort(key=f)
...but not quite everywhere, so DSU still
worth knowing!-)

10

DSU and heapq
class keyed_heapq(object):
 def __init__(self, seq, key):
 self.h = [(key(s), s) for s in seq]
 heapq.heapify(self.h)
 self.key = key
 def __len__(self):
 return len(self.h)
 def push(self, x):
 decorated = (self.key(x), x)
 heapq.heappush(self.h, decorated)
 def pop(self):
 return heapq.heappop(self.h)[1]
 def peek(self):
 return self.h[0][1]

11

Python Containers
a long time ago

in a version far, far away,
there were only list, dict, and tuple...

what a journey it has been since!-)

12

Container Idioms
set is a built-in: are you using it right?

and what about other "new" built-ins?
frozenset, bytearray, memoryview,
enumerate, reversed, buffer...?
ever used built-in object idiomatically?

collections has 5 containers obsoleting
("swallowing") many good old idioms

and 16 abc's -- even bigger potential!
(plus, more abc's -- the numbers module)

13

Your Honor, I object!
_sentinel = object()

def f(optional=_sentinel):
 if optional is _sentinel: ...

x = d.get(k, _sentinel)

Other Sentinel Pattern variants: +/- Infinity,
EqualsAll, PredicateSatisfier decorator...:
def predicate_satisfier(predicate):
 def wrapper(x):
 if x is _sentinel: return True
 return predicate(x)
 return wrapper

14

Some Swallowed Idioms
d.setdefault(x, []).append(y)...?
nevermore! use, instead:
d = collections.defaultdict(list)
d[x].append(y)

and for some idioms, generations passed:
if x in d: d[x] += 1
else: d[x] = 1

d[x] = 1 + d.get(x, 0)

d = collections.defaultdict(int)
d[x] += 1

d = collections.Counter(xs)

15

Not just dicts -- I/O, too...
while True:
 line = afile.readline()
 if line == '': break
 ...

nevermore! use: for line in afile:

f = open(...)
try: ...
finally: f.close()

nevermore! use: with open(...) as f:

16

collections.Counter
not just a multiset (though mostly that:-)

as it can have zero/negative counts too!
e.g: "items seen more often in xs than in ys"
a = collections.Counter(xs)
a.subtract(collections.Counter(ys))
return (a+collections.Counter()).keys()
and don't forget .elements and .most_common!-)
exercise: implement union, intersection, and
symmetric difference, between counter multisets!

17

>>> xs = 'tanto va la gatta al lardo'
>>> ys = 'four score and seven years ago'
>>> a = collections.Counter(xs)
>>> a
Counter({'a':7, ' ':5, 't':4, 'l':3, 'o':2,
'd':1, 'g':1, 'n':1, 'r':1, 'v':1})
>>> a.subtract(collections.Counter(ys))
>>> a
Counter({'a': 4, 't': 4, 'l': 3, ' ': 0,
'd': 0, 'g': 0, 'v': 0, 'c': -1, 'f': -1,
'o': -1, 'n': -1, 'u': -1, 'y': -1, 'r': -2,
's': -3, 'e': -4})
>>> xx = a + collections.Counter()
>>> xx
Counter({'a': 4, 't': 4, 'l': 3})
>>> xx.keys()
['a', 'l', 't']

18

collections.deque
not just "2-e queue" (though mostly that:-)
as it can have constrained length too!
perfect for a "ring buffer" ("last n items"):
d = collections.deque(iter, maxlen=n)
(itertools.islice can't support negative args!-)
caveat for C++ers: general d[x] is O(N), not O(1)!

19

namedtuple
namedtuple: mostly cosmetic, but,
readability counts!

a "factory of container types"!
>>> Person =
collections.namedtuple('Person', 'name
phone email')
>>> x = Person('Alex', '555-5555',
'a@lex')
>>> x
Person(name='Alex', phone='555-5555',
email='a@lex')
>>> type(x)
<class '__main__.Person'>

20

OrderedDict
OrderedDict: good, but *take care*!

bad anti-idiom alas often observed:
od = collections.OrderedDict(somedict)

see why it's totally useless...?
and similarly:

>>> collections.OrderedDict(b=1, a=2)
OrderedDict([('a', 2), ('b', 1)])
must be, instead:
od = OrderedDict([(b, 1), (a, 2)])

2115

Do you *need* a container?
Traditionally, you built up a list with
interesting items, then looped over it for
further processing
mylist = []
for rawitem in container:
 if interesting(rawitem):
 mylist.append(process(rawitem))
for x in mylist: ...
then, list comprehensions appeared...:
mylist = [process(r) for r in container
 if interesting(r)]
for x in mylist: ...

22

Turns out you often *don't*!
*generator expressions saved us a lot of memory...:
mygenex = (process(r) for r in container
 if interesting(r))
for x in mygenex: ...
...and the rush to iterators/generators was on!
itertools raised it to a craze w/*performance*

& cool recipes@ https://docs.python.org/
2/library/itertools.html#recipes

generators also begat co-routines
w/send and throw methods, yield as an expr
then yield from, making asyncio possible

23

Iterator idioms
"First item > 25" (raise if no item is > 25)
fi = next(x for x in iter if x > 25)
Ditto, but, a sentinel of 0 rather than raising
fi = next((x for x in iter if x > 25), 0)
Is iterator empty?
_sentinel == next(iter, _sentinel)
How many items in iterator?
hmi = sum(1 for _ in iter)

Do remember each such idiom (itertools
too!) advances/consumes the iterator! Cfr
itertools.tee if appropriate...

24

Duck typing...?
once upon a time...
def work(x):

try: x + 0
except TypeError: raise

...NEVER
if not isinstance(x, int):
 raise TypeError

25

isinstance rehabilitated
...thanks to Abstract Base Classes!
so nowadays...:
if not isinstance(x, numbers.Number):
 raise TypeError

and tomorrow...:
(PEP 3107, 484, ...)
def work(x: numbers.Number): (SWAN typing?)
Note you can still easily get it wrong...
def work(x: int): (CUCKOO typing?-)

26

...GOOSE typing!

Q & A
http://www.aleax.it/pyconit15_mppi_en.pdf

27

? !

