
©2009 Google -- aleax@google.com

Abstraction as Leverage

http://www.aleax.it/pycon_abst.pdf

Audience levels for this talk

2

Shu

Ha

Ri

("Retain")

("Detach")

("Transcend")

Q & A at the end
please!

A Tower of Abstraction

3

Leverage...

4

...lets you do
much more with

so little...

...but can crush
you if things go

wrong!

Can’t live without it...

5

programming (& most other “knowledge work”)
always USES layers of abstraction,
often PRODUCES new layers on top

...can’t live with it???

6

all abstractions “LEAK” (Spolsky’s Law)

bugs, overloads, security attacks, ...
... so you MUST “get” some levels below!

plus, abstractions SHOULD (s.t.;-) “leak”
in a designed, architected fashion

and: abstraction *can slow you down*!

Abstract -> Procrastinate!
McCrea, S. M., Liberman, N., Trope, Y., & Sherman,
S. J. -- Construal level and procrastination.
Psychological Science, Volume 19, Number 12,
December 2008, pp. 1308-1314(7)
events remote in time are represented more
abstractly than ones that are close in time
McCrea et al. empirically prove the reverse
also holds: more-abstract construal levels
lead to higher likelihood of procrastination
(at least for psych students - the only
experimental subjects in ALL literature;-)
Also: http://www.codinghorror.com/blog/archives/000922.html

7

To achieve, think CONCRETE
Allen’s “Getting Things Done”:

what’s my SINGLE NEXT ACTION?
Personas in interaction design (and user-
centered design):

NOT “the user”, BUT “Joe Blow, an
inexperienced trader with lots of
videogame experience, ...” or “Marc Smith,
a seasoned trader who started back in
the time of Hammurabi and is STILL most
comfortable with cuneiform, ...”

“prefer action over abstr-action” (J. Fried,
“37 signals” founder)

8

The Abstraction Penalty
when a language affords low-abstraction
AND high-abstraction approaches, there
may be a penalty for abstraction: cfr
Stepanov's paper and benchmark at http://
std.dkuug.dk/JTC1/SC22/WG21/docs/
PDTR18015.pdf (& much further research)
an issue of quality of implementation, and
not always the case: in Python we're more
used to get an *Abstraction Bonus* than
any abstraction penalty;-)
often via itertools, but not necessarily...

9

An Abstraction Bonus
$ python -mtimeit -s'x="abracadabra"' \
> 'y="".join(reversed(x))'
100000 loops, best of 3: 5.96 usec per loop
$ python -mtimeit -s'x="abracadabra"' \
> 'y=x[::-1]'
1000000 loops, best of 3: 0.597 usec per loop

10

all abstractions leak, because...:
...*all abstractions LIE*!

before you can abstract,
you must see the details

i.e.: before you can withdraw,
you must stand close

abstract only once you know all the details
or else, be humble & flexible about it!

All Abstractions Leak

11

the map is not the territory

A great example: TCP/IP

12

TCP/IP's "leak": TRUST!

13

TCP/IP's a great abstraction stack, BUT...
...it was designed in a long-ago era of trust!
The whole stack "leaks" all over the place
in terms of exposure to "sneaky" players

"below" (ARP cache poisoning),
"above" (DNS cache poisoning),
"to the sides" (BGP lies),
...etc, etc...

One "leak": DNS Poisoning

14

&, some SHOULD leak!

15

example: remote/distributed file systems
typically try to mimic “local” ones
the less local, the costlier the mimicry

local FS semantics, locking, reliability, ...
“filesystem” may be a superb abstraction
but “LOCAL filesystem” is definitely NOT!
(“never subclass concrete classes”...)

doesn’t mean the abstraction’s BAD to have
but you can’t have ONLY the abstraction!
need systematic ways to get “below” it

Good Abstraction Use

16

you MUST be fully aware of at least a
couple of layers “below”
and to DESIGN an excellent abstraction:

be VERY familiar with SEVERAL expected
implementations (“layers below”)
be VERY familiar with SEVERAL expected
uses (“layers above”)
i.e.: no blinders, no shortcuts!

YOU may be the next implementer OR user!
the Golden Rule makes EXTRA sense;-)

http://c2.com/cgi/wiki?TooMuchAbstraction

A Donald Knuth quote
the psychological profiling [[of the
programmer]] is mostly the ability to shift
levels of abstraction, from low level to high
level. To see something in the small and to
see something in the large. [[...]]
Computer scientists see things
simultaneously at the low level and the
high level [[of abstraction]]

17

http://www.ddj.com/184409858

A Jason Fried quote
“Here’s the problem with copying:

Copying skips understanding.
Understanding is how you grow.
You have to understand why something
works or why something is how it is.
When you copy it, you miss that.
You just repurpose the last layer instead
of understanding the layers underneath.”

Just ‘%s/copy/use existing high-level
abstractions blindly/g’ ...;-)

18

http://www.37signals.com/svn/posts/
1561-why-you-shouldnt-copy-us-or-anyone-else

A Jeff Atwood quote
“don’t reinvent the wheel,

unless you plan on learning more about
wheels!”

19

http://www.codinghorror.com/
blog/archives/001145.html

App Engine “hacks”

20

RPC

The monkeypatching way
all operations go through an RPC layer, via
apiproxy_stub_map.MakeSyncCall
the wrong answer: *monkey-patch* it...:

21

from google.appengine.api import \
 apiproxy_stub_map
_org = apiproxy_stub_map.MakeSyncCall
def fake(svc, cal, req, rsp):
 ...
 x = _org(svc, cal, req, rsp) ...
apiproxy_stub_map.MakeSyncCall = fake

Better answer: HOOKS
see: http://blog.appenginefan.com/2009/01/
hacking-google-app-engine-part-1.html

from google.appengine.api import apiproxy_stub_map
def prehook(svc, cal, req, rsp):
 ...
apiproxy_stub_map.apiproxy.GetPreCallHooks(
).Append(‘unique_name’, prehook, ‘opt_api_id’)

22

Q & A
http://www.aleax.it/pycon_abst.pdf

23

? !

