Exceptions & error handling
in Python 2 and Python 3

http://www.aleax.it/pyconl6.pdf

/ '/ ()/ (/ ‘

Python in a Nutshell 3rd ed

This talk cover parts of Chapter 5 of the
Early Release e-book version
50% off: http://www.oreilly.com/go/python45

disc.code TS2016; 40% on paper book pre-order

OREILLY"

DRM-free e-book Send us feedback

epub, mobi, PDF... ;;ﬁ‘“’/ “RBwhile we can still do

copy It to .a“ ?‘c Pyth()n major changes!
your devices! in a Nutshell

Exceptions: not always errors

P Ly
Traceback¥imost receriE g™ Tast) :

File“"<sadin>", 'laner 1, LR emmocillc
ZerobDivigaonBerors @i is 1 o0V Zcr®

>>> next(iter([]))
Traceback SsMost, recerily ceiwsd=iest) :
File "<stdin>"a@iinc sl , “an <medule>
Stoplteration
>S5

Throughout, I use exc to mean exception

The try statement

try: ..block...
[except (type, type...) [as x]:] ...
(O+ except clauses, narrowest first)
[elseﬂ .
(optional: execute without exception guard
iff no exc in block; must have 1+ except)
[finallyﬂ B
(optional: execute unconditionally at end;
no break, return [continue forbidden])

The raise statement

ralse exception object
must be an instance of BaseException

(in v2, could be a subclass -- avoid that!)

raise
must be in an except clause (or a function
called, directly or not, from one)
re-raises the exception being handled

When to raise and wh

def cross product(seql, seqg2):
1f not segl or not seqg2:
ralse ValueError('empty seq arg')
return [{xl, x2) for xI . an seql
for x2 1n seq2]

Note: no duplicate checks of errors that
Python itself checks anyway, e.g seql or
seq2 not being iterable (that will presumably
give a TypeError, which is probably fine).

6

Exceptions wrapping (v3)

@ v3 only (upgrade to v3, already!-)
@ traceback is held by the exception object

@ exc.with traceback(tb) gives a copy
of exc with a different traceback

@ last exc caught is context of new one

® raise new one from x sets cause
to x, which is None or exception instance

>>> def inverse(x):

try: return 1/x

except ZeroDivisionError as err:
: raise ValueError() from err
>>> 1nverse(0)
Traceback (most recent call last):

File "<stdin>", line 2, 1n 1nverse

ZeroDivisionError: division by zero

The above exception was the direct cause of the
following exception:

Traceback (most recent call last):
File "<stdin>", line 4, 1n 1nverse
ValueError
>>> try: print('inverse 1s', inverse(0))
. except ValueError: print('no inverse there')
no inverse there

8
LGS

exc context.==in v3

try: 1/0
except ZeroDivisionError:
1+ 36
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ZeroDivisionError: division by zero

During handling of the above exception,
another exception occurred:

Traceback (most recent call last):

File "<stdin>", line 3, in <module>
TypeError: unsupported operand type(s) for +:
‘int’ and" sti%

v2 would hide 1st exc; v3 shows both!

9
LGB

the with statement

with x [as y]: ..block...
..IS roughly the same as....

Yy = X. iGhEe ()

ok = True
try: ..block...
except:

_ok = False

1f not x. exit (*sys.exc 1info()):

ralse

finally:

1f ok: x. exit (None, None, None)

10

Making a context manager

@contextlib.contextmanager
def a context manager(args 1f any):
init N code if any
try:
enter code
yleld some result
except (handled, types) as exc:
exit w/exception
maybe "raise again if needed
finally:
unconditional exit code

11

Exceptions in generators

@ caller may use generator.throw(exc)
@ like raise exc at generator's yield
@ in v2 may pass type, value, traceback
@ typically used as...:
try: result = yield previous
except GeneratorExit: clean-up
@ caller may use generator.close()

@ which is just like:
generator.throw(GeneratorExit())

12

exception propagation
@ exceptions "bubble up” through the stack of
call frames (callee to caller to ...)
@ until caught in an except clause

@or exit In a context manager

@ (as finally clauses or context managers
are "bubbled through”, they execute)

@ if never caught, all the way to the top
® where sys.excepthook may act
@ ..but essentially just reporting/logging
@ lastly, atexit-registered functions

13

exceptions hierarchy (v2)

BaseException
Exception
StandardError
..many types/subtypes...
EnvironmentError
IOError, OSError
Stoplteration
Warning
GeneratorExit
KeyboardInterrupt
SystemExit

14

exceptions hierarchy (v3)

BaseException

Exception
..many types/subtypes...
OSError (AKA: IOError, EnvironmentError)

..subtypes, e.g FileNotFoundError...

Stoplteration
Warning

GeneratorExit

KeyboardInterrupt

SystemExit

15

OSError subclasses (v3)

def read_or_def(path, default):
try:
with open(path) as f: return f.read()
except IOError as e:

1f e.errno == errno.ENOENT:
return default
raise
def read_or_def(path, default):
try:

with open(path) as f:return f.read()
except FileNotFoundError:
return default

custom exceptions

@ best practice: have your module or package
define a custom exc class:

@ class Error(Exception): "docstring”

@ this lets client code easily catch errors
specific to your module or package

@ also use multiple inheritance to define your
module's versions of standard exceptions:

@ class MyTE(Error, TypeError): "doc”

@ this also lets client code easily catch (e.q)
TypeErrors wherever they come from

17

Strategies: LBYL, EAFP

@ Look Before You Leap:
@ check that all preconditions are met
@ if not, raise exc (or otherwise give error)
@ if met, perform op (no exc expected)
@ Easier to Ask Forgiveness than Permission
@ just try performing the operation
@ Python catches any prereq violations
@ and raises exc on your behalf
@ optionally catch to transform/enrich

18

LBYL problems

@ duplicates work Python performs anyway to
check preconditions

@ obscures code clarity due to structure:
@ check, raise if it fails
@ ...(repeat N times)...
@ actual useful work (only at the end)
@ some checks might erroneously be omitted
@ resulting in unexpected exceptions

@ things (e.g filesystem) may change at any
time (inc. between checks and operation!)

19

LBYL vs EAFP

def read_or_default(path, default):
spot the many problems...:
1f os.path.exists(path):
with open(path) as f: return f.read()
else:
return default

def read_or_default(path, default):
try:
with open(path) as f: return f.read()
except FileNotFoundError:
return default @

how to EAFP right

def trycall(obj, attr, default, *a, **k):
try: return getattr(obj, attr)(*a, **k)
except AttributeError: return default

def trycall(obj, attr, default, *a, **k):
try: method = getattr(obj, attr)
except Attributekrror: return default
else: return method(*a, **k)

Keep it narrow: DON'T guard foo many operations
within a try clause!

ral

Errors in large programs

@ consider all possible causes of errors...:
@ bugs in your code, or libraries you use
@ cover those with unit tests

@ mismatches between libraries' preregs and
your understanding of them

@ cover those with integration tests
@ invalid inputs to your code

@ great use for try/except!

@ remember: let Python do most checks!
@ invalid environment/config: ditto

22

Case-by-case handling

@ the info you (the coder) need (to fix bugs
etc) is NOT the same the user needs (to
remedy invalid inputs/environment/etc)

@ think of the user: everything else follows
@ never show the user a traceback
@ they can't do anything with it!
@ archive it, send to yourself (w/perm!), ...
@ design user error messages with care
@ focus on what they can/should do NOW!

@ if feasible, restart the program (maybe with
snapshot/restore; ideally with a "watchdoq")

23

logging
@ Python stdlib's Iog?ing package can be very

rich and complex if used to the fullest

@ worth your effort! logs is how you debug
(and optimize, etc) esp. server programs

@ ensure your logs are machine-parsable,
design log-parsing scripts carefully

@ when in doubt, default to logging all info
@ program state, environment, inputs, ...

@ don't log just errors: logging.info can give
you precious 'base-case comparisons too

24

avoid assert

@ although assert seems an attractive way to
check inputs and environment...

@ ...it's NOT: it's an "attractive nuisance”!

® becomes no-op when you run optimized
@ but inputs &c can be wrong even then!

@ often duplicates checks Python performs
@ it's usually a sub-case of LBYL...

@ use ONLY for sanity checks on infternal state
(and as "executable docs") while you're
developing and debugging your program!

25

Q& A

http://www.aleax.it/pyconl6.pdf

http://www.oreilly.com/go/python45

discount code: TS2016

26

