
©2016 Google -- aleax@google.com

Exceptions & error handling
in Python 2 and Python 3

http://www.aleax.it/pycon16.pdf

Python in a Nutshell 3rd ed
This talk cover parts of Chapter 5 of the

Early Release e-book version

50% off: http://www.oreilly.com/go/python45

disc.code TS2016; 40% on paper book pre-order

2

DRM-free e-book

epub, mobi, PDF…

copy it to all of

your devices!

Send us feedback

while we can still do

major changes!

Exceptions: not always errors
>>> 1/0
 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 ZeroDivisionError: division by zero

>>> next(iter([]))
 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 StopIteration
>>>

Throughout, I use exc to mean exception

3

The try statement
try: ...block...

[except (type, type...) [as x]:] ...

 (0+ except clauses, narrowest first)

[else:] ...

 (optional: execute without exception guard

 iff no exc in block; must have 1+ except)

[finally:] ...

 (optional: execute unconditionally at end;

 no break, return [continue forbidden])

4

The raise statement
raise exception_object
 must be an instance of BaseException

 (in v2, could be a subclass -- avoid that!)

raise
 must be in an except clause (or a function

 called, directly or not, from one)

 re-raises the exception being handled

5

When to raise and why

def cross_product(seq1, seq2):
 if not seq1 or not seq2:
 raise ValueError('empty seq arg')
 return [(x1, x2) for x1 in seq1
 for x2 in seq2]

Note: no duplicate checks of errors that
Python itself checks anyway, e.g seq1 or
seq2 not being iterable (that will presumably
give a TypeError, which is probably fine).

6

Exceptions wrapping (v3)
v3 only (upgrade to v3, already!-)

traceback is held by the exception object

exc.with_traceback(tb) gives a copy
of exc with a different traceback

last exc caught is __context__ of new one

raise new_one from x sets __cause__
to x, which is None or exception instance

7

>>> def inverse(x):
... try: return 1/x
... except ZeroDivisionError as err:
... raise ValueError() from err
>>> inverse(0)
Traceback (most recent call last):
 File "<stdin>", line 2, in inverse
ZeroDivisionError: division by zero
The above exception was the direct cause of the
following exception:
Traceback (most recent call last):
 File "<stdin>", line 4, in inverse
ValueError
>>> try: print('inverse is', inverse(0))
... except ValueError: print('no inverse there')
no inverse there

8

exc __context__ in v3
try: 1/0
except ZeroDivisionError:
 1+'x'

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ZeroDivisionError: division by zero

During handling of the above exception,
another exception occurred:

Traceback (most recent call last):
 File "<stdin>", line 3, in <module>
TypeError: unsupported operand type(s) for +:
'int' and 'str'

9

v2 would hide 1st exc; v3 shows both!

the with statement
with x [as y]: ...block...

 ...is roughly the same as...:

y = x.__enter__()
_ok = True
try: ...block...
except:
 _ok = False
 if not x.__exit__(*sys.exc_info()):
 raise
finally:
 if _ok: x.__exit__(None, None, None)

10

Making a context manager
@contextlib.contextmanager
def a_context_manager(args_if_any):
 # __init__ code if any
 try:
 # __enter__ code
 yield some_result
 except (handled, types) as exc:
 # __exit__ w/exception
 # maybe `raise` again if needed
 finally:
 # unconditional __exit__ code

11

Exceptions in generators
caller may use generator.throw(exc)

like raise exc at generator's yield

in v2 may pass type, value, traceback

typically used as...:

try: result = yield previous
except GeneratorExit: clean-up

caller may use generator.close()

which is just like:
generator.throw(GeneratorExit())

12

exception propagation
exceptions "bubble up" through the stack of
call frames (callee to caller to ...)

until caught in an except clause

or __exit__ in a context manager

(as finally clauses or context managers
are "bubbled through", they execute)

if never caught, all the way to the top

where sys.excepthook may act

...but essentially just reporting/logging

lastly, atexit-registered functions

13

exceptions hierarchy (v2)
BaseException

 Exception

 StandardError

 ...many types/subtypes...

 EnvironmentError

 IOError, OSError

 StopIteration

 Warning

 GeneratorExit

 KeyboardInterrupt

 SystemExit

14

exceptions hierarchy (v3)
BaseException

 Exception

 ...many types/subtypes...

 OSError (AKA: IOError, EnvironmentError)

 ...subtypes, e.g FileNotFoundError...

 StopIteration

 Warning

 GeneratorExit

 KeyboardInterrupt

 SystemExit

15

OSError subclasses (v3)
def read_or_def(path, default):
 try:
 with open(path) as f: return f.read()
 except IOError as e:
 if e.errno == errno.ENOENT:
 return default
 raise
def read_or_def(path, default):
 try:
 with open(path) as f:return f.read()
 except FileNotFoundError:
 return default

16

custom exceptions
best practice: have your module or package
define a custom exc class:

class Error(Exception): "docstring"

this lets client code easily catch errors
specific to your module or package

also use multiple inheritance to define your
module's versions of standard exceptions:

class MyTE(Error, TypeError): "doc"

this also lets client code easily catch (e.g)
TypeErrors wherever they come from

17

Strategies: LBYL, EAFP
Look Before You Leap:

check that all preconditions are met

if not, raise exc (or otherwise give error)

if met, perform op (no exc expected)

Easier to Ask Forgiveness than Permission

just try performing the operation

Python catches any prereq violations

and raises exc on your behalf

optionally catch to transform/enrich

18

LBYL problems
duplicates work Python performs anyway to
check preconditions

obscures code clarity due to structure:

check, raise if it fails

...(repeat N times)…

actual useful work (only at the end)

some checks might erroneously be omitted

resulting in unexpected exceptions

things (e.g filesystem) may change at any
time (inc. between checks and operation!)

19

LBYL vs EAFP

20

def read_or_default(path, default):
spot the many problems...:

 if os.path.exists(path):
 with open(path) as f: return f.read()
 else:
 return default

def read_or_default(path, default):
 try:
 with open(path) as f: return f.read()
 except FileNotFoundError:
 return default

how to EAFP right
def trycall(obj, attr, default, *a, **k):

try: return getattr(obj, attr)(*a, **k)
except AttributeError: return default

def trycall(obj, attr, default, *a, **k):
try: method = getattr(obj, attr)
except AttributeError: return default
else: return method(*a, **k)

21

Keep it narrow: DON'T guard too many operations
within a try clause!

Errors in large programs
consider all possible causes of errors...:

bugs in your code, or libraries you use

cover those with unit tests

mismatches between libraries' prereqs and
your understanding of them

cover those with integration tests

invalid inputs to your code

great use for try/except!

remember: let Python do most checks!

invalid environment/config: ditto

22

Case-by-case handling
the info you (the coder) need (to fix bugs
etc) is NOT the same the user needs (to
remedy invalid inputs/environment/etc)

think of the user: everything else follows

never show the user a traceback

they can't do anything with it!

archive it, send to yourself (w/perm!), ...

design user error messages with care

focus on what they can/should do NOW!

if feasible, restart the program (maybe with
snapshot/restore; ideally with a "watchdog")

23

logging
Python stdlib's logging package can be very
rich and complex if used to the fullest

worth your effort! logs is how you debug
(and optimize, etc) esp. server programs

ensure your logs are machine-parsable,
design log-parsing scripts carefully

when in doubt, default to logging all info

program state, environment, inputs, ...

don't log just errors: logging.info can give
you precious "base-case" comparisons too

24

avoid assert
although assert seems an attractive way to
check inputs and environment...

...it's NOT: it's an "attractive nuisance"!

becomes no-op when you run optimized

but inputs &c can be wrong even then!

often duplicates checks Python performs

it's usually a sub-case of LBYL...

use ONLY for sanity checks on internal state
(and as "executable docs") while you're
developing and debugging your program!

25

? !
Q & A

http://www.aleax.it/pycon16.pdf

26

http://www.oreilly.com/go/python45

discount code: TS2016

