"Good Enough” IS
Good Enough!

http://www.aleax.it/pybayl6 geige.pdf

This talk's "level"

Some Cultural Assumptions...:

@ everybody should always be striving for
perfection at all times!

@ settling for a software release that's
anywhere below “perfect!” is thus a most
regrettable compromise.

@ do you mostly agree with these...? OR....
@ keep-it-simple, just-good-enough
@ launch early, launch often!

@ get plenty feedback & LISTEN to it
@ iteratively improve, enhance, refactor...

3

"Worse is Better"

@ Richard Gabriel, 1989, a Lisp conference
@ "New Jersey" approach, AKA "WiB"
@ VS
@ "MIT/Stanford" approach, AKA "The Right
Thing"
@ years of debate afterwards (plenty of it by
RG, sometimes as "Nickieben Bourbaki")...

@ on BOTH sides of the issue!-)

All agree on what's good...:

@ simplicity

@ correctness
@ consistency
@ completeness

..but there are important differences in...:
- exact definitions and nuances

- priorities

Worse-is-better (e.g: Unix)

@ simplicity

@ implementation (esp!) AND interface

@ most important consideration in design
@ correctness

@ (slightly) better be simple than correct
@ consistency

@ "not overly inconsistent”
@ completeness

@ can be sacrificed to any of the top 3

® MUST be, if simplicity's threatened

6

"The Right Thing” ("MIT")

@ simplicity
@ esp. interface
@ correctness
@ absolute-must, fop priority
@ consistency
@ Just as important as correctness
@ completeness
@ roughly as important as simplicity

Quoting RG himself...:

@ The right-thing philosophy is based on
letting the experts do their expert thing
all the way to the end before users get
their hands on if.

@ Worse-is-better takes advantage of the
natural advantages of incremental
development. Incremental improvement
satishes some human needs...

G.K. Chesterton

@ Anything worth doing...
@ ..I1s worth doing badly!

Note to fontly critics

The proportional font | use is Apple Chalkboard,
which is NOT MS Comic Sans :-)

Cathedral, Bazaar...?

@ Eric Raymond, 1997 THE CATHED
@ focus: two diverging models of IRA[[XIV/TT}
software development ol
@ Cathedral: close to RG's be A '
"right-thing" MIT/Stanford

@ experts in charge
@ Bazaar: chaotic, launch-and- el

iterate NJ-like models -- crowd in charge

@ The core Bazaar idea: "given enough
eyeballs, all bugs are shallow”

11

BUGS?! I don't DO bugs!

@ my very first program ever WAS bug-free

® 1974: 3 freshmen HW design majors and a
Fortran program to compute conditional
probabilities of suit-division in bridge

@ we had to punch it into punched cards

@ we got one-&-only-one chance to run it...!

@ it ran perfectly that first-and-only-time...!
@ ..never ever happened again in my life.
@ ..don't count on it, buddy...!-)

12

"Perfection" -> BDUF

@ If you want to only release "Perfection”,
@ you clearly need "Big Design Up Front"
@ everything must proceed top-down,
@ perfect identification of requirements,
® begets perfect architecture,
@ begets perfect design,
@ begets perfect implementations,

o (it takes...) forever and ever, A-MEN!
@ alas! real life doesn't tend to co-operate...
@ stakeholders resent the "forever" part!-)

13

BDUF vs the real world

@ requirements change all the time
@ you ain't ever gonna nail them perfectly!
@ architecture varies with design choices
@ design varies with implementation fechs
@ implementation _always_ has some bugs
@ only discovered in real-world deployment
-=>
® ITERATIVE development's the only way to go!
e deploy SOMEthing, fix bugs, improve, ...
® solve SOME user problems, win mindshare

14

Backwards Incompatibility

@ ...is your FRIEND!-)

@ if you're constrained to remain backwards
compatible forever,

@ early-stage design errors drag you down
@ "good enough” IS good enough, IFF..
@ ..you can make it better later!

@ e.g: raise 'some string' NOW raises
TypeError instead (since Python 2.6)

"Perfect": verb, -~adjective!

@ perfecting your work is great
@ keep doing it -- based on real data!

@ perfection is a process, NOT a state
@ you never 'reach” it

@ goalposts keep shifting
@ no laurels to rest on!

What not to skimp on

@ light-weight, agile process and its steps
@ revision control, code reviews, testing..
@ proper release-engineering practices

@ code style, clarity, elegance

@ documentation /x

no cowboy coding! -

17

Must be in from the start

@ security, in the most general sense, incl.:
@ privacy
@ auditability

@ many other things would be "best” fo have
at the start, BUT you CAN refactor later...:

@ modularity, ‘plug-ins’
@ an API
@ scalability
@ you CAN incur technical debt, _with care_
@ but, DO plan “"repayment” as you go!

18

Recoverable or not?

@ focus on avoiding potential errors that could
cause irrecoverable losses

@ as long as one can/does recover, it's OK...
@ ..in a 'beta’, at least!-)

@ is the reputational damage fo yourself
recoverable...?

@ it depends! but, usually, YES

@ esp. w courteous, speedy response to
issues that get reported (=="service")

@ "get it right the 2nd time" is usually OK

19

Customer service secret

® "Customers with the highest levels of
satisfaction tend to be those who have had
a problem resolved” -- even better than
those who never had any problem at all!

@ it's the "Service Recovery Paradox"

@ http:// jsr.sagepub.com/content/
10/1/60.abstract

101 QUICK TIPS

General vs ad-hoc solution

@ intuition may tell us ad-hoc easier, faster
@ reality: sometimes, but NOT always (DRY!)

def find by col(root, color):

if root.color == color: yield root

yield from (find by col(c, color) for c in root.cs)
def find by sha(root, shape):

if root.shape == shape: yield root

yield from (find by sha(c, shape) for c in root.cs)

VS

def find(root, R, V)
if getattr(root, n) == v: yield root
yield from (find(c, n, v) for c in root.cs)

ral

WIB vs TRT: programming

THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

“MY CODE'S COMPILING.”

TCP/IP vs ISO/0OSI

DHCP SNMP HTTP } 1FIE 7. Application

ICMP 6. Presentation

—
IP
Ethernet

@ rough consensus... ~ 3.Network
@ ..and RUNNING CODE |]

(David Clark: MIT, but...
IETF front and center!)

Xanadu vs the WWW

Yov can and musf ndersfond compitiss oW,

COMPUTER

HTML CSS PNG GIF JPEG
HTTP

URL

Hackish, incrementally
improved hypertext

Guess which one

Perfect idogl conquered the world...?-)

hypertext

Intr syscall: ITS vs Unix

® MIT AI Lab's ITS:

@ every long-running syscall needs to be
quasi-atomic AND interruptible...

@ so: every syscall must be able to...
@ unwind state changes at ANY point
@ resume user-mode for intr. service

@ restart kernel-mode syscall code again
@ early Unix:
@ errno<—EINTR, return -1 -- that's it!-)

Metaclass vs Decorator

class Meta(type):
def = new ®(m, ny; b, djs
cls = type. new (m, n, b, d)
cls.foo = 'bar'
return cls
class X:

__metaclass = Meta

...VS...

def Deco(cls):
cls.foo = 'bar'
return cls

@Deco

class Y(object): pass

26

Python incrementals

@ sorting
@ once: alist.sort(cmp-=...)
@ always in-place; slow; a bit cumbersome
@ then: DSU
@ x=[(k(a),a) for a in alist]
@ x.sort(); alist[:] = x
@ now: alist.sort(key=k); sorted(alist, key=k)
@ generators: once yield-only, now w/ send’
@ finalization: once try-finally, now “with’

WIB vs TRT: other fields

I A Y — AN S A SN
e e
&
o

Good enough never is (or is it?)

@ Eric Ries, http://www.linkedin.com/today/
post/article/20121008194203-2157554-good-
enough-never-is-or-is-it

® "Lean Startups” use the "middle way" to...:

@ minimum viable product: that version of a
new product which allows a team to collect
the maximum amount of validated learning

with the least effort

@ 37signals’ Hansson disagrees: "just build
something awesome and ship it";-)

29

Pick a Perfect Employee...?

@ http://theunt
perfect-empl

@ you'll delay Anities
@ he/she mig there® oklng'
D you'd llkely - WworLyL: get :

—

Satisficer vs Maximizer

Satisficer:
90% is just fine,
take it, move on!

Maximizer:
" 99.99% is NOT
THE PARADDX [IF EHUIEE 100%,

80% may be OK [naim St SO it's A FAIL!

(20% of effort:
Pareto's Law)

Gettysburg Dedication

@ the "Oration: the soon-forgotten one...
@ Edward Everett
@ 13,508 words; two hours; reams of paper
@ & then, the "Address": not-so-forgettable...
@ Abraham Lincoln
@ 267 words; two minutes; back-of-envelope

@ "the world will little note, nor long
remember what we say here"...

@ but, 150 years later, it sure still DOES!-)

"Lowering expectations”?

@ NO! our dreams must stay big! BHAG!

@ Rightly traced and well ordered: what of
that? // Speak as they please, what does
the mountain care?

@ however: the best way TO those dreams
remains 'release early, release often”

@ learn from real users' interactions

@ Ah, but a man's reach should exceed his
grasp // Or what's a heaven for?

@ Browning's Andrea del Sarto: less is more!

33

Q& A

www.aleax.it/pybayl6 geige.pdf

http://shop.oreilly.com/product/0636920012610.do
ebooks, all formats, DRM-free; at checkout: AUTHD

