Design Patterns in Python

Alex Martelli (aleax@google.com)

http://www.aleax.it/pal_pydp.pdf

G00gle
Copyright ©2007, Google Inc

mailto:aleax@google.com
mailto:aleax@google.com
http://www.aleax.it/accu_tmsd.pdf
http://www.aleax.it/accu_tmsd.pdf

The "levels’ of this talk

Hit the ground running...

"Forces': some rich,
complex subsystem
offers a lot of useful
functionality; client
code interacts with
several parts of this |
Func’rlonall’ry in a way
that's “out of control”

@ this causes many
problems for client-code
programmers AND >
subsystem ones too (complexity + rlgldl’ry)

(:/ ()/"[(

3

Solution: the ' Facade DP

@ inferpose a simpler
"Facade" object/class
exposing a controlled
subset of functionality

@ client code now calls
into the Facade, only

@ the Facade implements B
its simpler functionality
via calls into the rich,
complex subsystem

@ subsystem implementation
gains flexibility, clients gain S|mpl|cn‘y

4

Facade Is a Design Pattern

@ summary of a frequent design problem +
structure of a solution to that problem (+
pros and cons, alternatives, ...), and:

@ A NAME (much easier to retain/discuss!)

@ "descriptions of communicating objects and
classes customized to solve a ?gneml design
problem in a particular contex

@ that's NOT: a data structure, algorithm,
domain-specific system architecfure,
programming-language/library feature

@ unusually, it's mostly language-independent
@ still, MUST supply Known Uses ("KU")

(o ()/"[/

5

Some Facade KUs

@ ...in the Python standard library...:
@ dbhash facades for bsddb
@ highly simplified/subset access

@ also meets the "dbm" interface (thus,
also an example of the Adapter DP)

@ os.path: basename, dirname facade for
split + indexing; isdir (&c) facade for
os.stat + stat.S_ISDIR (&c)

@ Facade is a structural DP (we'll see another,
Adapter, later; in dbhash, they "merge”!-)

(,'/ ()I;.('/

Design Patterns

What's a Design Pattern

@ summary of a frequent design problem +
structure of a solution fo that problem +
pros and cons, alfernatives, ..., and:

@ A NAME (much easier to retain/discuss!)

@ "descriptions of communicating objects and
classes customized to solve a ?gneml design
problem in a particular contex

@ DPs are NOT: data structures, algorithms,
domain-specific system architectures,
programming language features

® MUST be studied in a language's context!
® MUST supply Known Uses ("KU")
(o ()f(/

8

Many Good DP Books

Your Brain on Deatgn Patterns

Head First)
i, |m|111|1 Modern C++ Design
Demgn Patteljns XD AT el

orsff [aruig® Potiirm Apntayd
Andrel Alexandrescu

PATTERN HATCHING
Desaen Patlenss "L;n]:qi m:mm

~ avam swaiiowarv
" JAMES R. TROTT
) oo PrORPEs LT « IS Mrmalivp

DESIGN PATTERNS (SIS HHII[SHHHHH[

SMALLTALK COMPANION _ | B
: "[U[[HPHHH R EFACTORING

0O PATTERNS

.'hl ,
i] i
.wi .'.":J,.-},f
¥

0 5:“..-}]"

il

a5100% ¥

Design Patterns

Elu‘ntn nl Reusable
Object-Oriented Software

Frich Gamma
Richard Hei
2a Ih lohinson

08 231536 K

SIS DNILTIAWOD TYROISS

. Hobiert ¢ Martin

(biblio on the last

Classic DP Categories

@ Creational: ways and means of object
instantiation

@ Structural: mutual composition of classes or
objects (the Facade DP is Structural)

@ Behavioral: how classes or objects infteract
and distribute responsibilities among them

@ Each of the categories can be expressed at
class-level or object-level in a given DP

10

Prolegomena to DPs [1]

@ "program to an interface, not fo an
implementation”

@ that's mostly done with "duck typing" in
Python -- rarely w/"formal" interfaces

@ actually similar to "signature-based
polymorphism” in C++ templates

@ however, Python 3000 is adding ABCs,

and some major Python frameworks
(Zope, Twisted, PEAKS) already choose to
use more formal” interfaces anyway

11

Teaching the ducks to type takes a while,
but saves you keyboard work afterwards!-)

/ ;(’O/"[/
(

12

Prolegomena to DPs (2]

@ "favor object composition over class
inheritance”

@ in Python, basic idioms are hold and wrap
@ inherit only when it's really convenient

@ expose all methods in base class (reuse
+ usually override + maybe extend)

@ but, it's a very strong coupling!
@ object-level approaches are more fluid

@ (but: need class-level ones for special
methods/operator overriding)

13

Python: Hold and Wrap

) Eg?’ﬁ*ﬂi* ”“ir VP

TE R 5
‘‘‘‘‘
R

14

The "Hold" Basic Idiom

@ "Hold”: object O has subobject S as an
attribute (maybe property) -- thats all

@ use self.S.method or O.S.method

@ simple, direct, immediate, but... pretty
strong coupling, often on the wrong axis

q
————— >
//
|

\

\

|
client

15

The "Wrap" Basic Idiom

@ "Wrap”: hold (often via private name) plus
delegation (so you directly use O.method)

@ explicit (def method(self...)...self.S.method)
@ automatic (delegation in __getattr__)
@ gets coupling right (Law of Demeter)

er B

16

E.g: wrap to "'restrict”

class RestrictingWrapper(object):
def __1init__(self, w, block):
self._.w = w
self._block = block
def __getattr__(self, n):
1f n 1n self._block:
raise AttributeError, n
return getattr(self._w, n)

..since inheritance cannot restrict!
(but: special method take a lot of work here)

(() I'«

17

Creational Patterns

@ not very common in Python...
@ ..because "factory" is essentially built-in!-)

Fad b
F o Yl o
An i ; = ol
7 : .
; 4

Creational Patterns [1]

@ 'we want just one instance to exist"
1. use a module instead of a class
- no subclassing, no special methods, ...
2.make just 1 instance (no enforcement)
- need to commit to "when" to make it
3.singleton ("highlander™)
- subclassing not really smooth

4.monostate ("borg")
— Guido dislikes it

19

Singleton ("Highlander")

class Singleton(object):
def _new.:(cls, #a " ys
1f not hasattr(cls, '_inst'):
cls._inst = super(Singleton, cls
Y. _nhew = Ccls, *a, **Kk)
return cls._inst

subclassing is a problem, though:
class Foo(Singleton): pass
class Bar(Foo): pass

f = Foo(); b = Bar(); # 7277

problem is infrinsic to Singleton

(@ /"I/
20 ' Or'

Monostate ("Borg")

class Borg(object):
_Shared_state = {}
def - newx (cls, *a, **k):
obj = super(Borg, cls
Yokinew - Cels, *a,; **k)

obj.__dict__ = cls._shared_state
return obj

subclassing is no problem, just:
class Foo(Borg): pass

class Bar(Foo): pass
class Baz(Foo): _shared_state = {}
data overriding to the rescue!

21

Creational Patterns [2]

@ "we don't want to commit fo instantiating a
specific concrete class”

@ dependency injection

@ no creation except “outside”

@ what if multiple creations are needed?
@ "Factory"” subcategory of DPs

@ may create w/ever or reuse existing

@ factory functions (& other callables)

@ factory methods (overridable)

@ abstract factory classes

22

Factories in Python

@ each type/class is intrinsically a factory
@ internally, may have __new___

@ externally, it's just a callable,
interchangeable with any other

o mq?/ be injected directly (no need for
boilerplate factory functions)

@ modules can be kinda "abstract” factories
w/o inheritance (‘os' can be 'posix' or 'nt')

23

KU: type.___call__

def __call__(Cels.*a. *tiG
nu = cls.__new__(cls, *a, **k)
1f 1sinstance(nu, cls):
cls.__init__(nu, *a, **k)
return nu

(An instance of "two-phase construction”)

24

factory-function example

def load(pkg, obj):

m = __import__(pkg, {},{},[obj])
return getattr(m, obj)

example use:
cls = load('pl.p2.p3', 'c4')

25

Structural Patterns

@ focus on Adapter: tweak an interface (both
class and object variants exist)

® we've already seen Facade: simplify a
subsystem's interface

@ (won't cover many other important ones,
such as Proxy, Bridge, Decorator)

(7/)O/:’I(

26 (

Adapter

@ client code Y requires a protocol C

@ supplier code O provides different protocol
S (with a superset of C's functionality)

@ adapter code & “sneaks in the middle™:
@ to Yy, & is a supplier (produces protocol C)
@ to 0, o is a client (consumes protocol S)
@ "inside”, o implements C (by means of

appropriate calls to S on O)

..

27

Toy-example Adapter

@ C requires method foobar(foo, bar)
@ S supplies method barfoo(bar, foo)
@ e.g., O could be:

class Barfooer(object):

def barfoo(self, bar, foo):

28

Object Adapter

@ per-instance, with wrapping delegation:
class FoobarWrapper(object):

def __1init__(self, wrappee):
self.w = wrappee

def foobar(self, foo, bar):
return self.w.barfoo(bar, foo)

foobarer=FoobarWrapper(barfooer)

29

Class Adapter (direct)

@ per-class, w/subclasing & self-delegation:
class Foobarer(Barfooer):

def foobar(self, foo, bar):
return self.barfoo(bar, foo)

foobarer=Foobarer(...w/ever...)

30

Class Adapter (mixin)

@ flexible, good use of multiple inheritance:
class BFZ2FB:

def foobar(self, foo, bar):
return self.barfoo(bar, foo)

class Foobarer(BFZ2FB, Barfooer):
pAss

foobarer=Foobarer(...w/ever...)

(-00al

31

Adapter KU

@ socket.__fileobject: from sockets to file-like
objects (w/much code for buffering)

@ doctest.DocTestSuite: adapts doctest tests
to unittest.TestSuite

@ dbhash: adapt bsddb to dbm
@ StringIO: adapt str or unicode to file-like

@ shelve: adapt "limited dict" (str keys and
values, basic methods) to complete mapping

@ via pickle for any <-> string
@ + UserDict.DictMixin

32

Adapter observations

@ some RL adapters may require much code

@ mixin classes are a great way to help adapt
to rich protocols (implement advanced
methods on top of fundamental ones)

@ Adapter occurs at all levels of complexity

@ in Python, it's _not__ just about classes and
their instances (by a long shot!-) -- often
_callables__ are adapted (via decorators and
other HOFs, closures, functools, ...)

33

Adapter vs Facade

@ Adapter's about supplying a given protocol
required by client-code

@ or, gain polymorphism via homogeneity

@ Facade is about simplifying a rich interface
when just a subset is often needed

@ Facade most often "fronts” for a subsystem
made up of many classes/objects, Adapter
“front” for just one single object or class

34

Behavioral Patterns

@ focus on Template Method: self-delegation
@ (won't cover many, many important others)

IIQIIIIQIIIIQIIII@IIIIQIIIIIQIIIIIIQIH
This certifies that

O

(name)

15 herebp vecognized for demonstration of
Good Behabior

at {school)

afoarded_ (dae)

35

Template Method

@ great pattern, lousy name
@ "template” very overloaded
@ generic programming in C++
@ generation of document from skeleton
o ...
@ a better name: self-delegation
@ directly descriptive
@ TM tends to imply more “organization”

36

Classic TM

@ abstract base class offers “organizing
method” which calls "hook methods”

@ in ABC, hook methods stay abstract
@ concrete subclasses implement the hooks
@ client code calls organizing method
@ on some reference to ABC (injected, or...)
@ which of course refers to a concrete SC

3%

TM skeleton

class AbstractBase(object):
def orgMethod(self):
self.doThis()
self.doThat()

class Concrete(AbstractBase):
def doThis(self):
def doThat(self):

38

TM example: paginate text

@ to paginate text, you must:
@ remember max number of lines/page

@ output each line, while tracking where
you are on the page

@ just before the first line of each page,
emit a page header

@ just after the last line of each page, emit
a page footer

39

AbstractPager

class AbstractPager(object):
def __init__(self, mx=060):
self.mx = mx
self.cur = self.pg = 0
def writelLine(self, line):
1f self.cur == 0:
self.doHead(self.pg)
self.doWrite(line)
self.cur += 1
1f self.cur >= self.mx:

Se
Se
Se

Lf.doFoot(self.pg)
lf.cur = 0

lf.pg += 1

40

Concrete pager (stdout)

class PagerStdout(AbstractPager):
def doWrite(self, line):
print line
def doHead(self, pg):
print 'Page %d:\n\n' % pg+1
def doFoot(self, pg):
print '\f', # form-feed character

41

Concrete pager (curses)

class PagerCurses(AbstractPager):

def __1init__(self, w, mx=24):
AbstractPager.__init__(self, mx)
self.w = w

def doWrite(self, line):
self.w.addstr(self.cur, 0, line)

def doHead(self, pg):
self.w.move(@, 0)
self.w.clrtobot()

def doFoot(self, pg):
self.w.getch() # wait for keypress

(() I'«

42

Classic TM Rationale

@ the "organizing method” provides
"structural logic” (sequencing &c)

@ the "hook methods” perform “actual
“elementary” actions”

@ it's an often-appropriate factorization of
commonality and variation

@ focuses on objects' (classes')
responsibilities and collaborations: base
class calls hooks, subclass supplies them

@ embodies "Hollywood Principle™: "don't
call us, we'll call you" (framework vs lib)

(-00al

43

A choice for hooks

class TheBase(object):

def doThis(self):
provide a default (often a no-op)
pAss

def doThat(self):
or, force subclass to implement
(might also just be missing...)
raise NotImplementedError

Default implementations offen handier, when
sensible; but "mandatory” may be good docs.

((),

bt

Overriding Data

class AbstractPager(object):
mx = 060

class CursesPager(AbstractPager):
mx = 24

access simply as self.mx -- obviates any need
for boilerplate accessors self.getMx()...

45

KU: Queue.Queue

class Queue:

def put(self, i1tem):
self.not_full.acquire()
try:
while self._full():
self.not_full.wait()
self._put(item)
self.not_empty.notify()
finally:
self.not_full.release()
def _put(self, 1tem):

46

Queues TMDP

@ Not abstract, often used as-is
@ thus, implements all hook-methods

@ subclass can customize queueing discipline
@ with no worry about locking, timing, ...
@ default discipline is simple, useful FIFO

@ can override hook methods (_init, _gsize,
_empty, _full, _put, _get) AND...

@ ..data (maxsize, queue), a Python special

47

Customizing Queue

class LifoQueueA(Queue):
def _put(self, 1tem):
self.queue.appendleft(i1tem)

class LifoQueueB(Queue):
def _init(self, maxsize):
self.maxs1ze = maxsize
self.queue = 1i1st()
def _get(self):
return self.queue.pop()

48

KU: cmd.Cmd.cmdloop

def cmdloop(self):
self.preloop()
while True:
s = self.doinput()
s = self.precmd(s)
f ='self.docmd(s)
f = self.postcmd(f,s)
1f f: break
self.postloop()

49

TM+Adapter: DictMixin

@ Abstract, meant to multiply-inherit from
@ does not implement hook-methods

@ subclass must supply needed hook-methods
@ at least __getitem___, keys
o if R/W, also __setitem___, __delitem___
@ normally __init_, copy
@ may override more (for performance)

50

TM In DictMixin
class DictMixin:

def has_key(self, key):
try:
1mplies hook-call (__getitem__)
value = self[key]
except KeyError:
return False
return True

def __contains__(self, key):
return self.has_key(key)

51

Exploiting DictMixin

class Chainmap(UserDict.DictMixin):
def __init__(self, mappings):
self._maps = mappings
def __getitem__(self, key):
for m 1n self._maps:
try: return m[key]
except KeyError: pass
raise KeyError, key
def keys(self):
keys = set()
for m in self._maps: keys.update(m)
return list(keys) Covercilk

"Factoring out” the hooks

@ "organizing method" in one class

@ "hook methods" in another

@ KU: HTML formatter vs writer

@ KU: SAX parser vs handler

@ adds one axis of variability/flexibility
@ shades towards the Strategy DP:

@ Strategy: 1 abstract class per decision
point, independent concrete classes

@ Factored TM: abstract/concrete classes
more "'grouped”

53

TM + Introspection

@ "organizing” class can snoop into "hook"
class (maybe descendant) at runtime

@ find out what hook methods exist

@ dispatch appropriately (including "catch-
all" and/or other error-handling)

54

KU: emd.Cmd.docmd

def docmd(self, cmd, a):
try:
fn = getattr(self, 'do_' + cmd)
except AttributeError:

return self.dodefault(cmd, a)
return fn(a)

55

Interleaved TMs KU

@ plain + factored +

@ multiple "axes”, to separate carefully
distinct variabilities

@ a DP equivalent of a "Fuga a Tre Soggetti”

@ "all art aspires to the condition of
music" (Pater, Pound, Santayana...?-)

56

KU: unittest.TestCase

def__call__(self, result=None):
method = (selfavl
try: self.setUp()
except: result.addError(...)

try:)

except self.failException, e:...

try: self.tearDown()
except: result.addError(...)
...result.addSuccess(...)...

57

! ():/

Questions & Answers

58

1.Design Patterns: Elements of Reusable Object-Oriented Software --
Gamma, Helms, Johnson, Vlissides -- advanced, very deep, THE classic
"Gang of 4" book that started it all (C++)

2.Head First Design Patterns -- Freeman -- introductory, fast-paced,
very hands-on (Java)

3.Design Patterns Explained -- Shalloway, Trott -- infroductory, mix
of examples, reasoning and explanation (Java)

4.The Design Patterns Smalltalk Companion -- Alpert, Brown, Woolf
—- intermediate, very language-specific (Smalltalk)

5.Agile Software Development, Principles, Patterns and Practices --
Martin -- intermediate, extremely practical, great mix of theory and
practice (Java, C++)

6.Refactoring to Patterns -- Kerievsky -- introductory, strong
emphasis on refactoring existing code (Java)

7.Pattern Hatching, Design Patterns Applied -- Vlissides -- advanced,
anecdotal, specific applications of idea from the Gof4 book (C++)

8.Modern C++ Design: Generic Programming and Design Patterns
Applied -- Alexandrescu -- advanced, very language specific (C++)

{ :/’()/"

-

(

59

