
Copyright ©2007, Google Inc

Design Patterns in Python

Alex Martelli (aleax@google.com)

http://www.aleax.it/pal_pydp.pdf

mailto:aleax@google.com
mailto:aleax@google.com
http://www.aleax.it/accu_tmsd.pdf
http://www.aleax.it/accu_tmsd.pdf

The "levels" of this talk

2

Shu

Ha

Ri

Py

DP("Retain")

("Detach")

("Transcend")

Hit the ground running...

3

"Forces": some rich,
complex subsystem
offers a lot of useful
functionality; client
code interacts with
several parts of this
functionality in a way
that's "out of control"
this causes many
problems for client-code
programmers AND
subsystem ones too (complexity + rigidity)

Solution: the "Facade" DP

4

interpose a simpler
"Facade" object/class
exposing a controlled
subset of functionality

client code now calls
into the Facade, only
the Facade implements
its simpler functionality
via calls into the rich,
complex subsystem

subsystem implementation
gains flexibility, clients gain simplicity

© 2004 AB Strakt 17

STRAKT

DP "Facade"

! existing supplier code ! provides rich,
complex functionality in protocol S

! we need a simpler "subset" C of S

! facade code " implements and supplies C
(by calling S on !)

Facade is a Design Pattern
summary of a frequent design problem +
structure of a solution to that problem (+
pros and cons, alternatives, ...), and:

A NAME (much easier to retain/discuss!)
"descriptions of communicating objects and
classes customized to solve a general design
problem in a particular context"
that's NOT: a data structure, algorithm,
domain-specific system architecture,
programming-language/library feature
unusually, it's mostly language-independent
still, MUST supply Known Uses ("KU")

5

Some Facade KUs
...in the Python standard library...:

dbhash facades for bsddb
highly simplified/subset access
also meets the "dbm" interface (thus,
also an example of the Adapter DP)

os.path: basename, dirname facade for
split + indexing; isdir (&c) facade for
os.stat + stat.S_ISDIR (&c)

Facade is a structural DP (we'll see another,
Adapter, later; in dbhash, they "merge"!-)

6

Design Patterns

7

What's a Design Pattern

8

summary of a frequent design problem +
structure of a solution to that problem +
pros and cons, alternatives, ..., and:

A NAME (much easier to retain/discuss!)
"descriptions of communicating objects and
classes customized to solve a general design
problem in a particular context"
DPs are NOT: data structures, algorithms,
domain-specific system architectures,
programming language features
MUST be studied in a language's context!
MUST supply Known Uses ("KU")

Many Good DP Books

9(biblio on the last slide)

Classic DP Categories
Creational: ways and means of object
instantiation
Structural: mutual composition of classes or
objects (the Facade DP is Structural)
Behavioral: how classes or objects interact
and distribute responsibilities among them
Each of the categories can be expressed at
class-level or object-level in a given DP

10

Prolegomena to DPs [1]
"program to an interface, not to an
implementation"

that's mostly done with "duck typing" in
Python -- rarely w/"formal" interfaces
actually similar to "signature-based
polymorphism" in C++ templates
however, Python 3000 is adding ABCs,
and some major Python frameworks
(Zope, Twisted, PEAKS) already choose to
use more "formal" interfaces anyway

11

But, Duck Typing Still Rocks!

12

Teaching the ducks to type takes a while,
but saves you keyboard work afterwards!-)

Prolegomena to DPs [2]
"favor object composition over class
inheritance"

in Python, basic idioms are hold and wrap
inherit only when it's really convenient

expose all methods in base class (reuse
+ usually override + maybe extend)
but, it's a very strong coupling!

object-level approaches are more fluid
(but: need class-level ones for special
methods/operator overriding)

13

Python: Hold and Wrap

14

The "Hold" Basic Idiom
“Hold”: object O has subobject S as an
attribute (maybe property) -- that’s all

use self.S.method or O.S.method
simple, direct, immediate, but... pretty
strong coupling, often on the wrong axis

15

holder holdee

client

The "Wrap" Basic Idiom
“Wrap”: hold (often via private name) plus
delegation (so you directly use O.method)

explicit (def method(self...)...self.S.method)
automatic (delegation in __getattr__)
gets coupling right (Law of Demeter)

16

wrapper wrappee

client

class RestrictingWrapper(object):
def __init__(self, w, block):
self._w = w
self._block = block

def __getattr__(self, n):
if n in self._block:
raise AttributeError, n

return getattr(self._w, n)
...since inheritance cannot restrict!
(but: special method take a lot of work here)

E.g: wrap to "restrict"

17

Creational Patterns
not very common in Python...
...because "factory" is essentially built-in!-)

18

Creational Patterns [1]
"we want just one instance to exist"
1. use a module instead of a class
- no subclassing, no special methods, ...

2.make just 1 instance (no enforcement)
- need to commit to "when" to make it

3.singleton ("highlander")
- subclassing not really smooth

4.monostate ("borg")
- Guido dislikes it

19

Singleton ("Highlander")
class Singleton(object):
def __new__(cls, *a, **k):

if not hasattr(cls, '_inst'):
cls._inst = super(Singleton, cls
).__new__(cls, *a, **k)

return cls._inst

subclassing is a problem, though:
class Foo(Singleton): pass
class Bar(Foo): pass
f = Foo(); b = Bar(); # ...???...
problem is intrinsic to Singleton

20

Monostate ("Borg")
class Borg(object):
_shared_state = {}
def __new__(cls, *a, **k):
obj = super(Borg, cls
).__new__(cls, *a, **k)

obj.__dict__ = cls._shared_state
return obj

subclassing is no problem, just:
class Foo(Borg): pass
class Bar(Foo): pass
class Baz(Foo): _shared_state = {}
data overriding to the rescue!

21

Creational Patterns [2]
"we don't want to commit to instantiating a
specific concrete class"

dependency injection
no creation except "outside"
what if multiple creations are needed?

"Factory" subcategory of DPs
may create w/ever or reuse existing
factory functions (& other callables)
factory methods (overridable)
abstract factory classes

22

Factories in Python
each type/class is intrinsically a factory

internally, may have __new__
externally, it's just a callable,
interchangeable with any other
may be injected directly (no need for
boilerplate factory functions)

modules can be kinda "abstract" factories
w/o inheritance ('os' can be 'posix' or 'nt')

23

KU: type.__call__
def __call__(cls,*a,**k):
 nu = cls.__new__(cls,*a,**k)
 if isinstance(nu, cls):
 cls.__init__(nu,*a,**k)
 return nu

(An instance of "two-phase construction")

24

factory-function example
def load(pkg, obj):
 m = __import__(pkg,{},{},[obj])
 return getattr(m, obj)

example use:
cls = load('p1.p2.p3', 'c4')

25

Structural Patterns
focus on Adapter: tweak an interface (both
class and object variants exist)

we've already seen Facade: simplify a
subsystem's interface
(won't cover many other important ones,
such as Proxy, Bridge, Decorator)

26

Adapter
client code γ requires a protocol C
supplier code σ provides different protocol
S (with a superset of C's functionality)
adapter code α "sneaks in the middle":

to γ, α is a supplier (produces protocol C)
to σ, α is a client (consumes protocol S)
"inside", α implements C (by means of
appropriate calls to S on σ)

27

© 2004 AB Strakt 11

STRAKT

DP "Adapter"

! client code ! requires a certain protocol C

! supplier code " provides different protocol
S (with a superset of C's functionality)

! adapter code # "sneaks in the middle":
• to !, # is supplier code (produces protocol C)

• to ", # is client code (consumes protocol S)

• "inside", # implements C (by means of calls to S on ")

("interface" vs "protocol": "syntax" vs "syntax
+ semantics + pragmatics")

Toy-example Adapter
C requires method foobar(foo, bar)
S supplies method barfoo(bar, foo)
e.g., σ could be:
class Barfooer(object):
 def barfoo(self, bar, foo):

...

28

Object Adapter
per-instance, with wrapping delegation:
class FoobarWrapper(object):
def __init__(self, wrappee):
self.w = wrappee

def foobar(self, foo, bar):
return self.w.barfoo(bar, foo)

foobarer=FoobarWrapper(barfooer)

29

Class Adapter (direct)
per-class, w/subclasing & self-delegation:
class Foobarer(Barfooer):
def foobar(self, foo, bar):
return self.barfoo(bar, foo)

foobarer=Foobarer(...w/ever...)

30

Class Adapter (mixin)
flexible, good use of multiple inheritance:
class BF2FB:
def foobar(self, foo, bar):
return self.barfoo(bar, foo)

class Foobarer(BF2FB, Barfooer):
 pass

foobarer=Foobarer(...w/ever...)

31

Adapter KU
socket._fileobject: from sockets to file-like
objects (w/much code for buffering)
doctest.DocTestSuite: adapts doctest tests
to unittest.TestSuite
dbhash: adapt bsddb to dbm
StringIO: adapt str or unicode to file-like
shelve: adapt "limited dict" (str keys and
values, basic methods) to complete mapping

via pickle for any <-> string
+ UserDict.DictMixin

32

Adapter observations
some RL adapters may require much code
mixin classes are a great way to help adapt
to rich protocols (implement advanced
methods on top of fundamental ones)
Adapter occurs at all levels of complexity
in Python, it's _not_ just about classes and
their instances (by a long shot!-) -- often
callables are adapted (via decorators and
other HOFs, closures, functools, ...)

33

Adapter vs Facade
Adapter's about supplying a given protocol
required by client-code

or, gain polymorphism via homogeneity
Facade is about simplifying a rich interface
when just a subset is often needed
Facade most often "fronts" for a subsystem
made up of many classes/objects, Adapter
"front" for just one single object or class

34

Behavioral Patterns
focus on Template Method: self-delegation
(won't cover many, many important others)

35

Template Method
great pattern, lousy name

"template" very overloaded
generic programming in C++
generation of document from skeleton
...

a better name: self-delegation
directly descriptive
TM tends to imply more "organization"

36

Classic TM
abstract base class offers "organizing
method" which calls "hook methods"
in ABC, hook methods stay abstract
concrete subclasses implement the hooks
client code calls organizing method

on some reference to ABC (injected, or...)
which of course refers to a concrete SC

37

TM skeleton
class AbstractBase(object):
def orgMethod(self):
self.doThis()
self.doThat()

class Concrete(AbstractBase):
def doThis(self): ...
def doThat(self): ...

38

TM example: paginate text
to paginate text, you must:

remember max number of lines/page
output each line, while tracking where
you are on the page
just before the first line of each page,
emit a page header
just after the last line of each page, emit
a page footer

39

AbstractPager
class AbstractPager(object):
def __init__(self, mx=60):
self.mx = mx
self.cur = self.pg = 0

def writeLine(self, line):
if self.cur == 0:
self.doHead(self.pg)

self.doWrite(line)
self.cur += 1
if self.cur >= self.mx:
self.doFoot(self.pg)
self.cur = 0
self.pg += 1

40

Concrete pager (stdout)
class PagerStdout(AbstractPager):
def doWrite(self, line):
print line

def doHead(self, pg):
print 'Page %d:\n\n' % pg+1

def doFoot(self, pg):
print '\f', # form-feed character

41

Concrete pager (curses)
class PagerCurses(AbstractPager):
 def __init__(self, w, mx=24):
 AbstractPager.__init__(self, mx)
 self.w = w
def doWrite(self, line):
self.w.addstr(self.cur, 0, line)

def doHead(self, pg):
self.w.move(0, 0)
self.w.clrtobot()

def doFoot(self, pg):
self.w.getch() # wait for keypress

42

Classic TM Rationale
the "organizing method" provides
"structural logic" (sequencing &c)
the "hook methods" perform "actual
``elementary'' actions"
it's an often-appropriate factorization of
commonality and variation

focuses on objects' (classes')
responsibilities and collaborations: base
class calls hooks, subclass supplies them
embodies "Hollywood Principle": "don't
call us, we'll call you" (framework vs lib)

43

A choice for hooks
class TheBase(object):
 def doThis(self):
 # provide a default (often a no-op)
 pass
 def doThat(self):
 # or, force subclass to implement
 # (might also just be missing...)
 raise NotImplementedError

Default implementations often handier, when
sensible; but "mandatory" may be good docs.

44

Overriding Data
class AbstractPager(object):
 mx = 60
...
class CursesPager(AbstractPager):
 mx = 24
...

access simply as self.mx -- obviates any need
for boilerplate accessors self.getMx()...

45

class Queue:
...
def put(self, item):
self.not_full.acquire()
try:
while self._full():
self.not_full.wait()

self._put(item)
self.not_empty.notify()

finally:
self.not_full.release()

def _put(self, item): ...

KU: Queue.Queue

46

Queue’s TMDP
Not abstract, often used as-is

thus, implements all hook-methods
subclass can customize queueing discipline

with no worry about locking, timing, ...
default discipline is simple, useful FIFO
can override hook methods (_init, _qsize,
_empty, _full, _put, _get) AND...
...data (maxsize, queue), a Python special

47

class LifoQueueA(Queue):
def _put(self, item):
self.queue.appendleft(item)

class LifoQueueB(Queue):
def _init(self, maxsize):
self.maxsize = maxsize
self.queue = list()

def _get(self):
return self.queue.pop()

Customizing Queue

48

KU: cmd.Cmd.cmdloop
def cmdloop(self):
 self.preloop()
 while True:
 s = self.doinput()
 s = self.precmd(s)
 f = self.docmd(s)
 f = self.postcmd(f,s)
 if f: break
 self.postloop()

49

TM+Adapter: DictMixin
Abstract, meant to multiply-inherit from

does not implement hook-methods
subclass must supply needed hook-methods

at least __getitem__, keys
if R/W, also __setitem__, __delitem__
normally __init__, copy
may override more (for performance)

50

class DictMixin:
...
def has_key(self, key):
 try:
 # implies hook-call (__getitem__)
 value = self[key]
 except KeyError:
 return False
 return True
def __contains__(self, key):
 return self.has_key(key)...

TM in DictMixin

51

class Chainmap(UserDict.DictMixin):
def __init__(self, mappings):
self._maps = mappings

def __getitem__(self, key):
for m in self._maps:
try: return m[key]
except KeyError: pass

raise KeyError, key
def keys(self):
keys = set()
for m in self._maps: keys.update(m)
return list(keys)

Exploiting DictMixin

52

"Factoring out" the hooks
"organizing method" in one class
"hook methods" in another
KU: HTML formatter vs writer
KU: SAX parser vs handler
adds one axis of variability/flexibility
shades towards the Strategy DP:

Strategy: 1 abstract class per decision
point, independent concrete classes
Factored TM: abstract/concrete classes
more "grouped"

53

TM + introspection
"organizing" class can snoop into "hook"
class (maybe descendant) at runtime

find out what hook methods exist
dispatch appropriately (including "catch-
all" and/or other error-handling)

54

KU: cmd.Cmd.docmd
def docmd(self, cmd, a):
 ...
 try:
 fn = getattr(self, 'do_' + cmd)
 except AttributeError:
 return self.dodefault(cmd, a)
 return fn(a)

55

Interleaved TMs KU
plain + factored + introspective

multiple "axes", to separate carefully
distinct variabilities

a DP equivalent of a "Fuga a Tre Soggetti"
"all art aspires to the condition of
music" (Pater, Pound, Santayana...?-)

56

KU: unittest.TestCase
def__call__(self, result=None):
 method = getattr(self, ...)
 try: self.setUp()
 except: result.addError(...)
 try: method()
 except self.failException, e:...
 try: self.tearDown()
 except: result.addError(...)
 ...result.addSuccess(...)...

57

Questions & Answers

58

Q?
A!

59

1.Design Patterns: Elements of Reusable Object-Oriented Software --
Gamma, Helms, Johnson, Vlissides -- advanced, very deep, THE classic
"Gang of 4" book that started it all (C++)
2.Head First Design Patterns -- Freeman -- introductory, fast-paced,
very hands-on (Java)
3.Design Patterns Explained -- Shalloway, Trott -- introductory, mix
of examples, reasoning and explanation (Java)
4.The Design Patterns Smalltalk Companion -- Alpert, Brown, Woolf
-- intermediate, very language-specific (Smalltalk)
5.Agile Software Development, Principles, Patterns and Practices --
Martin -- intermediate, extremely practical, great mix of theory and
practice (Java, C++)
6.Refactoring to Patterns -- Kerievsky -- introductory, strong
emphasis on refactoring existing code (Java)
7.Pattern Hatching, Design Patterns Applied -- Vlissides -- advanced,
anecdotal, specific applications of idea from the Gof4 book (C++)
8.Modern C++ Design: Generic Programming and Design Patterns
Applied -- Alexandrescu -- advanced, very language specific (C++)

