
©2013 Google -- aleax@google.com

"Good Enough" IS
Good Enough!

http://www.aleax.it/oscon13_geige.pdf



Some Cultural Assumptions...:
everybody should always be striving for 
perfection at all times!

settling for a software release that's 
anywhere below "perfect!" is thus a most 
regrettable compromise.

do you mostly agree with these...? OR...:
keep-it-simple, just-good-enough

launch early, launch often!
get plenty feedback & LISTEN to it
iteratively improve, enhance, refactor...

2



"Worse is Better"
Richard Gabriel, 1989, a Lisp conference

"New Jersey" approach, AKA "WiB"
vs

"MIT/Stanford" approach, AKA "The Right 
Thing"

years of debate afterwards (plenty of it by 
RG, sometimes as "Nickieben Bourbaki")...

on BOTH sides of the issue!-)

3



Worse-is-better (e.g: Unix)
simplicity

implementation (esp!) AND interface
most important consideration in design

correctness
(slightly) better be simple than correct

consistency
"not overly inconsistent"

completeness
can be sacrificed to any of the top 3
MUST be, if simplicity's threatened

4



"The Right Thing" ("MIT")
simplicity

esp. interface
correctness

absolute-must, top priority
consistency

just as important as correctness
completeness

roughly as important as simplicity

5



Quoting RG himself...:
The right-thing philosophy is based on 
letting the experts do their expert thing 
all the way to the end before users get 
their hands on it.
Worse-is-better takes advantage of the 
natural advantages of incremental 
development. Incremental improvement 
satisfies some human needs...

6



G.K. Chesterton
Anything worth doing...

...is worth doing badly!

7



Note to fontly critics

8

The proportional font I use is Apple Chalkboard, 

which is NOT MS Comic Sans :-)



Cathedral, Bazaar...?
Eric Raymond, 1997
focus: two diverging models of
software development

Cathedral: close to RG's
"right-thing" MIT/Stanford

experts in charge
Bazaar: chaotic, launch-and-
iterate NJ-like models -- crowd in charge

The core Bazaar idea: "given enough 
eyeballs, all bugs are shallow"

9



BUGS?!  I don't DO bugs!
my very first program ever WAS bug-free

1974: 3 freshmen HW design majors and 
a Fortran program to compute conditional 
probabilities of suit-division in bridge
we had to punch it into punched cards
we got one-&-only-one chance to run it...!

it ran perfectly that first-and-only-time...!
...never ever happened again in my life.
...don't count on it, buddy...!-)

10



"Perfection" -> BDUF
If you want to only release "Perfection",

you clearly need "Big Design Up Front"
everything must proceed top-down,

perfect identification of requirements,
begets perfect architecture,
begets perfect design,
begets perfect implementations,

(it takes...) forever and ever, A-MEN!
alas! real life doesn't tend to co-operate...

stakeholders resent the "forever" part!-)

11



BDUF vs the real world
requirements change all the time

you ain't ever gonna nail them perfectly!
architecture varies with design choices
design varies with implementation techs
implementation _always_ has some bugs

only discovered in real-world deployment
-->

• ITERATIVE development's the only way to go!
• deploy SOMEthing, fix bugs, improve, ...
• solve SOME user problems, win mindshare

12



Backwards Incompatibility
...is your FRIEND!-)

if you're constrained to remain backwards 
compatible forever,
early-stage design errors drag you down

"good enough" IS good enough, IFF...
...you can make it better later!

e.g: raise 'some string' now raises 
TypeError instead (since Python 2.6)

13



"Perfect": verb, ¬adjective!
perfecting your work is great

keep doing it -- based on real data!
perfection is a process, NOT a state

you never "reach" it
goalposts keep shifting
no laurels to rest on!

14



What not to skimp on
light-weight, agile process and its steps

revision control, code reviews, testing...
proper release-engineering practices

code style, clarity, elegance
documentation

15

no cowboy coding!



Must be in from the start
security, in the most general sense, incl.:

privacy
auditability

many other things would be `best` to have 
at the start, BUT you CAN refactor later...:

modularity, `plug-ins`
an API
scalability

you CAN incur technical debt, _with care_

16



Recoverable or not?
focus on avoiding potential errors that 
could cause irrecoverable losses

as long as one can/does recover, it's OK...
...in a `beta`, at least!-)

is the reputational damage to yourself 
recoverable...?

it depends!  but, most usually, YES
esp. w courteous, speedy response to 
issues that get reported (=="service")

"get it right the 2nd time" is usually OK

17



Customer service secret
"Customers with the highest levels of 
satisfaction tend to be those who have had 
a problem resolved" -- even better than 
those who never had any problem at all!
it's the "Service Recovery Paradox"

http://jsr.sagepub.com/content/
10/1/60.abstract

18



General vs ad-hoc solution
intuition may tell us ad-hoc easier, faster
reality: sometimes, but NOT always (DRY!)

19

def find_by_col(root, color):
  if root.color == color: yield root
  yield from (find_by_col(c, color) for c in root.cs)
def find_by_sha(root, shape):
  if root.shape == shape: yield root
  yield from (find_by_sha(c, shape) for c in root.cs)

vs
def find(root, n, v):
  if getattr(root, n) == v: yield root
  yield from (find(c, n, v) for c in root.cs)



WIB vs TRT: programming

20



TCP/IP vs ISO/OSI

rough consensus...
...and RUNNING CODE
(David Clark: MIT, but...
IETF front and center!)

21



Xanadu vs the WWW

22

Perfect, ideal 
hypertext

Hackish, incrementally
improved hypertext

Guess which one
conquered the world...?-)



Intr syscall: ITS vs Unix
MIT AI Lab's ITS:

every long-running syscall needs to be 
quasi-atomic AND interruptible...

so: every syscall must be able to...:
unwind state changes at ANY point
resume user-mode for intr. service
restart kernel-mode syscall again

early Unix:
errno←EINTR, return -1 -- that's it!-)

23



Metaclass vs Decorator
class Meta(type):
  def __new__(m, n, b, d):
    cls = type.__new__(m, n, b, d)
    cls.foo = 'bar'
    return cls
class X:
  __metaclass__ = Meta

def Deco(cls):
    cls.foo = 'bar'
    return cls
@Deco
class Y(object): pass

24

...vs...



WIB vs TRT: other fields

25

Bleep



Good enough never is (or is it?)
Eric Ries, http://www.linkedin.com/today/
post/article/20121008194203-2157554-
good-enough-never-is-or-is-it
"Lean Startups" use the "middle way" to...:
minimum viable product: that version of a 
new product which allows a team to collect 
the maximum amount of validated learning 
with the least effort
37signals' Hansson disagrees: "just build 
something awesome and ship it";-)

26



http://theundercoverrecruiter.com/find-
perfect-employee/ : DON'T!

you'll delay by months, miss opportunities
he/she might not be out there looking!
you'd likely be over budget

rather:
pick a GOOD (not PERFECT!) fit
focus on personality & culture match
provide TRAINING on missing skills

Pick a Perfect Employee...?

27



Satisficer vs Maximizer

28

Satisficer:
90% is just fine,
take it, move on!

80% may be OK
(20% of effort:
Pareto's Law)

Maximizer:
99.99% is NOT

100%,
so it's A FAIL!



the "Oration": the soon-forgotten one...
Edward Everett
13,508 words; two hours; reams of paper

& then, the "Address": not-so-forgettable...
Abraham Lincoln
267 words; two minutes; back-of-envelope

"the world will little note, nor long 
remember what we say here"...

but, 150 years later, it sure still DOES!-)

Gettysburg Dedication

29



"Lowering expectations"?
NO! our dreams must stay big! BHAG!

Rightly traced and well ordered: what of 
that? // Speak as they please, what does 
the mountain care?

however: the best way TO those dreams 
remains "release early, release often"

learn from real users' interactions
Ah, but a man's reach should exceed his 
grasp // Or what's a heaven for?
Browning's Andrea del Sarto: less is more!

30



Q & A
http://www.aleax.it/oscon13_geige.pdf

31

?   !


