Code Reviews
for Fun and Profit

http://www.aleax.it/oscO8_crev.pdf

Audience levels for this talk

Contents of this talk

@ code reviews: why don't we do enough?

@ "Fagan inspections” vs lightweight CRs

@ "too-light" CRs & their anti-patterns

@ some "social aspects” of CRs

@ what to check in CRs: readability and hard-

to-test stuff (AUTOMATE all you can!-)
@ tools and processes for CRs

Code Reviews

@ identified very early (generations ago!) as a
great way to enhance code quality

® way cheaper than having customers find
those bugs "in the field"... or even QA!-)

@ also catches problems testing and static

analysis can't (clarity, readability, names)
@ widely acknowledged "best practice”

@ so why is it sometimes "more honored in
the breach than in the observance'?-)

@ reviews done spottily or not at all
® "rubber-stamp” reviews...

A

"Fagan inspection”

@ VERY heavy-weight part of very heavy-
weight, high-ceremony processes

@ requirement docs, test plans, architectural
design, &c, are "inspected” as well as code

@ phases: planning, overview meeting,

@ {preparation, inspection meeting, rework,
follow-up verification 1+ times

@ "moderator” decides; ~6 people/meeting

@ high-formality -> very high cost, unsuitable
except in high-formality/rigid processes

@ ..which have other limits/problems too;-)
U5 ()!’

5

Where's the ROI?

® smartbearsoftware.com
of

@ they want to sell you their T
products ("Code Collaborator”
&c) and services, BUT, they do
so with clarity, transparency,

and honor, providing lots of good
free supporting materials

@ case studies, analysis, biblio, ...

@ summary: Fagan is good, but
lightweight is better (esp. w/
good tool support of course;-)

6

Don't be too lightweight (1)

@ "no process at all"? reviews are NOT your
top problem, then!-)

® worst: no version control system...!
@ next worst: no automated tests...!
@ then: no accepted "team style”, no auto

checks for it, no bug/feature tracker, ...
@ FIRST fix any such gaping, bleeding wounds,

@ THEN proceed to worrying about code
reviews!-)

Don't be too lightweight (2)

@ If you have "just enough” process & tools,
but no space in them for code reviews

@ so, they happen sporadically (if at all)
@ and/or are often "rubberstamp"...
@ maybe "not for the Big Guys"...?

@ "pair programming instead"”...?
@ "TDD instead"...!?

@ so THIS is the right state from which to
enhance your process!-)

PP vs CRs

@ pair programming is greaf, BUT,
@ not really a substitute for code reviews!
@ the pair can easily get "synchronized”

@ some things are clear/obvious to both, as
"they've been there at creation”, but...

@ may not be clear to others who weren't
there (may need comments, &c)

@ may hide subtle problems ("given
enough eyeballs, all bugs are shallow":
4 may not be enough!-)

@ best practice: do *both* PP *and* CRs!
L5 ()!’

9

TDD vs CRs

@ test-driven development is great, BUT,
® ABSOLUTELY no substitute for code reviews!
@ leaves you w/great unit tests (yay tests!)
@ tests that also help document the code
@ many Kinds of bugs WILL be caught

@ BUT: no guarantee of clarity, readability,
consistent naming, ...

@ AND: some kinds of bugs often escape
@ best practice: do *both* TDD *and* CRs!

"Not 4 the Big Guys'? (1)

@ excessive 'reverence’ for authority, fame
or seniority can inhibit "juniors™ reviews

@ unlikely to be an issue in US geek culture
@ however, watch out (esp. other cultures!)
@ can also cause "rubberstamp reviews"

@ antidote: "don't criticize, ASK"
@ no: "'this will break when the arg == 0"
@ yes: "what happens when the arg == 0?"
@ frame it as LEARNING about things
@ may prompt a fix, a comment, ...

11

"Not 4 the Big Guys'? (2)

@ "Big Guys" sometimes have fragile egos...!
@ e.g., Wwhen they see perfection as a state,

@ not as a goal + a process to move
towards it!-)

@ big negative effect on team spirit

@ may overshadow BG's contributions
@ "don't criticize, ASK" can help w/this too
@ less likely to trigger defensive reflexes
@ try moving towards that style in general

"Rubberstamp review" (1)

@ may be "excessive reverence"
@ "if HE did it this way, I can't question it!"

@ easy to counter: cast reviewing as a way
to learn better technique &c

@ which it actually IS, crucially & often!

@ occasionally seen: the reverse effect
@ way-picky interminable back-&-forths
@ often, mostly about bikeshedding
@ counter: focus on team-spirit
@ and: *making forward progress™!

13

"Rubberstamp review" (2)

@ may be "lack of buy-in"

@ reviewer grudgingly agrees to perform
reviews 'as a chore”, doesn't believe
they're actually worth their time

@ worst: "swapping” rubberstamp reviews

@ need evangelism, supporting data!
@ (also sometimes causes reverse-effect)

The Social Side of CRs (1)

@ only model I've ever seen work: everyone
gets their work reviewed, every fime

@ everyone learns AND everyone teaches

@ you don t every morning stop to think and
decide "do I really need to brush my

teeth today"? You make it a HABIT!-)
@ think of CRs as part of “code hygiene"!-)

The Social Side of CRs (2)

@ generally best: every review is open to
whole team, everyone is heartily invited to
comment, but one designated reviewer
"owns" the review (and follow-up to check
defects are clarified & fixed)... like for any
other action item!-)

@ potential problem: “"reviewer shopping”

@ social problems are best solved socially
and culturally

@ however, sometimes a techie fix can help
@ e.g., random reviewer assignment

(o (),

16

7]

What vou DON'T check

® Do NOT use CR time to check for such
things as formatting issues &c

@ your team's style MUST be auto-checked
by lint-like or IDE tools; if you're doing
manually what's easily automated, EEK!-)

@ same for unit-test coverage &c...
AUTOMATE!

@ also, no need to focus as much on stuff
that unit-tests (&c) would catch (but...)

So WHAT do you check?

@ check, particularly, those issues that tools
will "never” catch: readability, clarity,
understanding, significant&consistent names
plus, focus on hard-to-test-for issues...:

@ quality of fests

@ proper error handling
@ resource-leak issues
@ security issues

@ multi-tasking

@ performance

@ portability

Readability &c: docs first!

@ comments & other internal docs...:
@ match code but never "just repeat it"

@ are good, concise, correct English (or
whatever language the project is in!-)

@ use names consistent with those used in
the code & generally terminology well
suited to the programming lang (int vs
integer, bool vs Boolean, ...)

@ *point to* docs on complex algorithms or
external docs (specs, libs &c), DON'T
repeat such things in the middle of code

('/ ()IV!(

19

Readability &c: non-docs

@ code is clear, readable, concise (but not
TOO terse)

@ and respects DRY (Don't Repeat Yourself)
® names are meaningful & consistent
@ UI, if any, is clear and follows the whole

project's style (*especially* error/log info!!!)
@ *appropriate™ info in error msgs & logs!
@ no "reinventing the wheel": *reuse™!

@ the clearest code (and the least likely to
break) is the code that's NOT there;-)

('/ ()IV!(

Hard-to-test issues (1)

@ beyond test coverage, are corner and error
cases well tested (w/mocks, DI, &c)?

@ error handling: if language has exceptions,
are they handled properly? if not, are all
return values checked for error cases?

@ any memory leaks (or equivalent in GC
languages)? any other resource leaks?

@ is everything properly cleaned up along
all paths? including error ones? tests?

@ any security issues? SQL injection, XSS,
buffer overflow, ...

Hard-to-test issues (2)

@ multi-tasking (shudder...;-): any race
conditions? possible deadlocks? be VERY
defensive here...!

o (if feasible, architect appropriately...)
@ performance: any premature optimizations?

However, also enforce "waste not want
not" (no easily avoided overhead if "the
fast way" is just about as simple;-)

@ any portability issues? what platforms has
the code been fully tested on?

Tools & Processes

@ lightweight CRs should be doable remotely
and at convenient times for all involved

o face-to-face/over-the-shoulder style has
pluses, but is intrinsically higher-weight

@ plus, no useful "audit trail” is left

@ still might be good in "sprints"/"spikes”
@ remote-but-synchronized (IM, IRC and
other "chat" approaches) may be usable

@ if no timezone &c issues...

® email DOES meet these basic needs...!

Code Reviews by email

@ definitely not a "shiny new tool"...;-)

@ however, It has many clear pluses
@ universally available (web & otherwise)
@ typically very customizable user-agents
@ programs are also easily customized fto:

@ automatically send e-mails on triggers
@ receive e-mails and act upon them

@ any "shiny new tool” SHOULD be designed
to cooperate smoothly w/email CRs!-)

email CR workflow (1)

@ VCS (or reviewee) starts a CR by mailing
main reviewer (CC the team) with text and/
or pointer to change-set ("patch”, diff, &c)

@ pointer/identifier typically very useful
(depending on VCS capabilities), as it may

allow easy viewing of diffs on whole files

@ but, diff text is often a good "hook" for
reviewer comments!

@ so, I'd suggest using both, when feasible

email CR workflow (2)

@ ideally, CR mailing should happen BEFORE
actual commit/push of change-set to the
codebase -- upholds trunk/head/tip quality

@ if that's unfeasible (due to VCS limitations),
consider a “staging repository” or branch

for "committed but unreviewed" changes

@ only commit to trunk/head once the
review is complete and satisfactory

@ distributed VCS' flexibility allows for many
different workflows, of course

email CR workflow (3)

@ reviewer comments on regions of the diffs
@ asking for clarifications,
@ suggesting possible changes,

@ pointing out definite problems (and thus
implicitly demanding changes)

@ question-style may be best...
@ others may offer similar feedback

® author MUST solve each issue to the
reviewer's satisfaction: reviewer rules!

@ ..whence the "reviewer shopping" issue;-)

(¢ ()/' (

changeset size for CRs

@ aim for changesets of about 200 lines
(depending on your language's terseness;-),
INCLUDING comments (which need CR too!)

@ smaller may obviously be needed (for simple
bug fixes, tiny feature additions)

@ bigger is harder to review well... fry HARD
not to exceed about 400 lines, PLEASE...

Duration of CR sessions

@ don't spend more than 60-90 minutes
reviewing: effectiveness "drops off a cliff”
around about that time!

@ "habituation effects” byte really hard
@ alas, there's no "getting in the zone" for

CRs anywhere to the extent it can
happen for coding or debugging sessions

@ similarly: no more than 1 review/half day (1
in the morning, 1 in the afternoon)

@ sometimes there will be pressure, of
course...

shiny new tools (OSS only)

@ Rietveld (see http://code.google.com/p/
rietveld/ and codereview.appspot.com)

@ hosted on GAE, so you don't even have to
provide your own server...;-)

@ VERY "shiny new" at this time, still;-)

@ Review Board (http://review-board.org/)

@ Codestriker (http://
codestriker.sourceforge.net/) -- in perl!

@ Java Code Reviewer (http://
icodereview.sourceforge.net/ -- actually in
Python and usable for non-Java reviews;-)

{ 24 ()!/

30

Q&A
http://www.aleax.1t/o0sc@8_crev.pdf

