
©2008 Google -- aleax@google.com

Code Reviews
for Fun and Profit

http://www.aleax.it/osc08_crev.pdf

Audience levels for this talk

2

Shu

Ha

Ri

("Retain")

("Detach")

("Transcend")

Contents of this talk

3

code reviews: why don't we do enough?
"Fagan inspections" vs lightweight CRs
"too-light" CRs & their anti-patterns
some "social aspects" of CRs
what to check in CRs: readability and hard-
to-test stuff (AUTOMATE all you can!-)
tools and processes for CRs

Code Reviews

4

identified very early (generations ago!) as a
great way to enhance code quality

way cheaper than having customers find
those bugs "in the field"... or even QA!-)
also catches problems testing and static
analysis can't (clarity, readability, names)

widely acknowledged "best practice"
so why is it sometimes "more honored in
the breach than in the observance"?-)

reviews done spottily or not at all
"rubber-stamp" reviews...

"Fagan inspection"
VERY heavy-weight part of very heavy-
weight, high-ceremony processes
requirement docs, test plans, architectural
design, &c, are "inspected" as well as code
phases: planning, overview meeting,

{preparation, inspection meeting, rework,
follow-up verification} 1+ times
"moderator" decides; ~6 people/meeting

high-formality -> very high cost, unsuitable
except in high-formality/rigid processes

...which have other limits/problems too;-)
5

Where's the ROI?
smartbearsoftware.com
they want to sell you their
products ("Code Collaborator"
&c) and services, BUT, they do
so with clarity, transparency,
and honor, providing lots of good
free supporting materials
case studies, analysis, biblio, ...
summary: Fagan is good, but
lightweight is better (esp. w/
good tool support of course;-)

6

Don't be too lightweight (1)
"no process at all"? reviews are NOT your
top problem, then!-)

worst: no version control system...!
next worst: no automated tests...!
then: no accepted "team style", no auto
checks for it, no bug/feature tracker, ...

FIRST fix any such gaping, bleeding wounds,
THEN proceed to worrying about code
reviews!-)

7

Don't be too lightweight (2)
If you have "just enough" process & tools,
but no space in them for code reviews

so, they happen sporadically (if at all)
and/or are often "rubberstamp"...

maybe "not for the Big Guys"...?
"pair programming instead"...?
"TDD instead"...!?

so THIS is the right state from which to
enhance your process!-)

8

PP vs CRs
pair programming is great, BUT,
not really a substitute for code reviews!

the pair can easily get "synchronized"
some things are clear/obvious to both, as
"they've been there at creation", but...

may not be clear to others who weren't
there (may need comments, &c)
may hide subtle problems ("given
enough eyeballs, all bugs are shallow":
4 may not be enough!-)

best practice: do *both* PP *and* CRs!
9

TDD vs CRs
test-driven development is great, BUT,
ABSOLUTELY no substitute for code reviews!

leaves you w/great unit tests (yay tests!)
tests that also help document the code
many kinds of bugs WILL be caught

BUT: no guarantee of clarity, readability,
consistent naming, ...

AND: some kinds of bugs often escape
best practice: do *both* TDD *and* CRs!

10

"Not 4 the Big Guys"? (1)
excessive "reverence" for authority, fame
or seniority can inhibit "juniors'" reviews

unlikely to be an issue in US geek culture
however, watch out (esp. other cultures!)
can also cause "rubberstamp reviews"

antidote: "don't criticize, ASK"
no: "this will break when the arg == 0"
yes: "what happens when the arg == 0?"

frame it as LEARNING about things
may prompt a fix, a comment, ...

11

"Not 4 the Big Guys"? (2)
"Big Guys" sometimes have fragile egos...!

e.g., when they see perfection as a state,
not as a goal + a process to move
towards it!-)
big negative effect on team spirit

may overshadow BG's contributions
"don't criticize, ASK" can help w/this too

less likely to trigger defensive reflexes
try moving towards that style in general

12

"Rubberstamp review" (1)
may be "excessive reverence"

"if HE did it this way, I can't question it!"
easy to counter: cast reviewing as a way
to learn better technique &c

which it actually IS, crucially & often!
occasionally seen: the reverse effect

way-picky interminable back-&-forths
often, mostly about bikeshedding
counter: focus on team-spirit

and: *making forward progress*!

13

"Rubberstamp review" (2)
may be "lack of buy-in"

reviewer grudgingly agrees to perform
reviews "as a chore", doesn't believe
they're actually worth their time
worst: "swapping" rubberstamp reviews
need evangelism, supporting data!

(also sometimes causes reverse-effect)

14

The Social Side of CRs (1)
only model I've ever seen work: everyone
gets their work reviewed, every time

everyone learns AND everyone teaches
you don't every morning stop to think and
decide "do I really need to brush my
teeth today"? You make it a HABIT!-)
think of CRs as part of "code hygiene"!-)

15

The Social Side of CRs (2)
generally best: every review is open to
whole team, everyone is heartily invited to
comment, but one designated reviewer
"owns" the review (and follow-up to check
defects are clarified & fixed)... like for any
other action item!-)
potential problem: "reviewer shopping"

social problems are best solved socially
and culturally
however, sometimes a techie fix can help

e.g., random reviewer assignment

16

What you DON'T check
Do NOT use CR time to check for such
things as formatting issues &c

your team's style MUST be auto-checked
by lint-like or IDE tools; if you're doing
manually what's easily automated, EEK!-)
same for unit-test coverage &c...

also, no need to focus as much on stuff
that unit-tests (&c) would catch (but...)

17

A U T O M A T E !

So WHAT do you check?
check, particularly, those issues that tools
will "never" catch: readability, clarity,
understanding, significant&consistent names
plus, focus on hard-to-test-for issues...:

quality of tests
proper error handling
resource-leak issues
security issues
multi-tasking
performance
portability

18

Readability &c: docs first!
comments & other internal docs...:

match code but never "just repeat it"
are good, concise, correct English (or
whatever language the project is in!-)
use names consistent with those used in
the code & generally terminology well
suited to the programming lang (int vs
integer, bool vs Boolean, ...)
point to docs on complex algorithms or
external docs (specs, libs &c), DON'T
repeat such things in the middle of code

19

Readability &c: non-docs
code is clear, readable, concise (but not
TOO terse)

and respects DRY (Don't Repeat Yourself)
names are meaningful & consistent
UI, if any, is clear and follows the whole
project's style (*especially* error/log info!!!)

appropriate info in error msgs & logs!
no "reinventing the wheel": *reuse*!

the clearest code (and the least likely to
break) is the code that's NOT there;-)

20

Hard-to-test issues (1)
beyond test coverage, are corner and error
cases well tested (w/mocks, DI, &c)?
error handling: if language has exceptions,
are they handled properly? if not, are all
return values checked for error cases?
any memory leaks (or equivalent in GC
languages)? any other resource leaks?

is everything properly cleaned up along
all paths? including error ones? tests?

any security issues? SQL injection, XSS,
buffer overflow, ...

21

Hard-to-test issues (2)
multi-tasking (shudder...;-): any race
conditions? possible deadlocks? be VERY
defensive here...!

(if feasible, architect appropriately...)
performance: any premature optimizations?
However, also enforce "waste not want
not" (no easily avoided overhead if "the
fast way" is just about as simple;-)
any portability issues? what platforms has
the code been fully tested on?

22

Tools & Processes
lightweight CRs should be doable remotely
and at convenient times for all involved

face-to-face/over-the-shoulder style has
pluses, but is intrinsically higher-weight

plus, no useful "audit trail" is left
still might be good in "sprints"/"spikes"

remote-but-synchronized (IM, IRC and
other "chat" approaches) may be usable

if no timezone &c issues...
email DOES meet these basic needs...!

23

Code Reviews by email
definitely not a "shiny new tool"...;-)
however, it has many clear pluses

universally available (web & otherwise)
typically very customizable user-agents
programs are also easily customized to:

automatically send e-mails on triggers
receive e-mails and act upon them

any "shiny new tool" SHOULD be designed
to cooperate smoothly w/email CRs!-)

24

email CR workflow (1)
VCS (or reviewee) starts a CR by mailing
main reviewer (CC the team) with text and/
or pointer to change-set ("patch", diff, &c)

pointer/identifier typically very useful
(depending on VCS capabilities), as it may
allow easy viewing of diffs on whole files
but, diff text is often a good "hook" for
reviewer comments!
so, I'd suggest using both, when feasible

25

email CR workflow (2)
ideally, CR mailing should happen BEFORE
actual commit/push of change-set to the
codebase -- upholds trunk/head/tip quality
if that's unfeasible (due to VCS limitations),
consider a "staging repository" or branch
for "committed but unreviewed" changes

only commit to trunk/head once the
review is complete and satisfactory

distributed VCS' flexibility allows for many
different workflows, of course

26

email CR workflow (3)
reviewer comments on regions of the diffs

asking for clarifications,
suggesting possible changes,
pointing out definite problems (and thus
implicitly demanding changes)

question-style may be best...
others may offer similar feedback
author MUST solve each issue to the
reviewer's satisfaction: reviewer rules!
...whence the "reviewer shopping" issue;-)

27

changeset size for CRs
aim for changesets of about 200 lines
(depending on your language's terseness;-),
INCLUDING comments (which need CR too!)
smaller may obviously be needed (for simple
bug fixes, tiny feature additions)
bigger is harder to review well... try HARD
not to exceed about 400 lines, PLEASE...

28

Duration of CR sessions
don't spend more than 60-90 minutes
reviewing: effectiveness "drops off a cliff"
around about that time!

"habituation effects" byte really hard
alas, there's no "getting in the zone" for
CRs anywhere to the extent it can
happen for coding or debugging sessions

similarly: no more than 1 review/half day (1
in the morning, 1 in the afternoon)
sometimes there will be pressure, of
course...

29

shiny new tools (OSS only)
Rietveld (see http://code.google.com/p/
rietveld/ and codereview.appspot.com)

hosted on GAE, so you don't even have to
provide your own server...;-)
VERY "shiny new" at this time, still;-)

Review Board (http://review-board.org/)
Codestriker (http://
codestriker.sourceforge.net/) -- in perl!
Java Code Reviewer (http://
jcodereview.sourceforge.net/ -- actually in
Python and usable for non-Java reviews;-)

30

Q & A
http://www.aleax.it/osc08_crev.pdf

31

? !

