
©2007 Google -- aleax@google.com

Technical Management Of
Software Development

with some lessons from Open-Source

Alex Martelli

What Levels I Address

Shu

Ha

Ri

("Retain")

("Detach")

("Transcend")

+: let's keep this
INTERACTIVE!

1

Shu: where you're "learning by rote", ONE technique, action by action
Ha: where you're comparing/contrasting techniques, picking the right
one case by case
Ri: where you leave "book learning" behind, create your own techniques

2

Why Do I Teach This...

You teach best
what you most
need to learn.

Why are you here?
• presumably to learn something interesting,

improve what you do, and thus CHANGE it
• so, one meta-issue: how do you change?
• the "system view": you can't "change just

one thing" ('cuz everything touches all)
• the pragmatic view: you'd better try to!
• "big bang" changes are hard and risky
• AND they don't let you judge easily
• INCREMENTAL AND ITERATIVE change:

it's not smart just for software stuph!-)

You're probably familiar with the works of R. Bach, but if you aren't I
recommend them highly (and I don't read much fiction...).

3

I'm very keen on _incremental and iterative_ change -- *one step at a
time*. If you change 4 things at once and it works, how do you KNOW
which ones really helped? if they don't work, how do you know which
ones soured things? If you must try two things A and B, try A first; if it
doesn't work, drop it and try B; THEN try both together to see if there's
good or bad synergy... well, this doesn't scale (you need 2**N steps to
try N things;-), so you need some mixed strategy -- but "big bang" is
STILL a disaster!-)

4

What do you manage?
• one (SW-centered) project
• what characteristics, &c?

• multiple (SW-centered) projects
• how do they relate/interact?

• a (SW-centered) sector/division of a firm
• how does it interact w/the "outside"?
• how does it interact w/other divisions?

• a (SW-centered) firm
• business model? finance/sales/mktg...?

• PEOPLE? (in the end, what else matters?!-)

Who IS a Manager?

Of course, there are many other possibilities (and "a firm" can be a 3-
person startup or a 30,000-person biggie, etc;-). But if you do manage,
you DO manage PEOPLE -- the red thread running through my whole
talk.

5

I actually picked only managers I respect and appreciate for this slide
(well, not the PHB, I guess, but he does give me MANY laughs:-). The
lower-left corner knight is Swedish King Gustavus Adolphus. The
football guys on the right are Italy's Word Champion team from 2006 --
the one holding the cup is Cannavaro, the playing captain; in the top left
is Lippi, the non-playing manager/trainer of the winning team, holding
the same cup later. Iacocca, Mayer, Jobs, Cox, Hopper, hopefully need
no intro:-)

6

"Traditional" Management
top-down hierarchy (often many layers)

a plus: matches authority/responsibility
a minus: impedes flow of communication

"lowest" level is closest to customers,
prospects, production, technology...
...thus likeliest to notice things, get
bright new ideas for innovation...
but information/ideas must travel up,
where a decision is made, and
must then travel back down (SLOW!)

"Traditional" Management
• top-down hierarchy (often many layers)
• a plus: matches authority/responsibility
• a minus: impedes flow of communication
• "lowest" level is closest to customers,

prospects, production, technology...
• ...thus likeliest to notice things, get

bright new ideas for innovation...
• but information/ideas must travel up,
• where a decision is made, and
• must then travel back down (SLOW!)

Most real-life traditional mgmt hierarchies are deeper and less
elementary than this.

7

As time goes by, change and innovation are speedier, more disruptive,
and more crucial to the firm's success -- so, traditional hierarchies
become less and less appropriate (punctilious execution remains very
important in many fields, but invariably it must be conjugated with
innovation and with riding the endless frothy waves of disruptive-
changes...!).

8

"Knowledge Workers"
• more and more important in the economy
• highly professional in their field(s)
• top productivity requires them having very,

very high flexibility and autonomy
• no intrinsic respect for "authority" not

underpinned by professional competence
• subculture often based on "peer

recognition" among colleagues
• how does "the manager" gain the

KWs' trust and respect...?

Management in OSS
• "hands-on dictators" can work
• Linux, Python, ...
• requires great technical prestige in the

community and right kind of personality
• inevitably "grows" ``middle-managers''

• "committees" can work
• Debian, FreeBSD, Apache, ...
• requires the right kind of community
• can be very time-consuming, but in the

end very effective ("wisdom of crowds")

It's a new term, but the concept is very old (though it accounts for a
growing fraction of the economy as time goes by). Given key workers
who live in a subculture where technical competence is the main
determinant of status, how does the manager gain their trust and
respect? (This is known in the trade as "foreshadowing":-).

9

An effective "dictator" in fact ends up delegating A LOT -- unilateral, anti-
consensus decisions are rare (though admittedly pretty crucial when
they DO happen:-).

10

Managing Risk
• "actively attack risks, otherwise

they will actively attack you"
• risk 1: building the wrong thing
• risk 2: building the thing wrong
• to fight risks, they have to be

VISIBLE (use TRANSPARENCY)
• cheat: fight them when they're little and

can't yet fight back (ANTICIPATE risks)
• just one downside: will this really help your

career? (do you truly care?)

How Much Control?
• if a project starts in "chaos" (zero

"control"), we easily observe that adding a
little control increases project efficiency

• so, if a little control is good, more must be
better, right...?

• wrong! there can easily be too much
• the "sweet spot" for the "just right"

amount of control varies by project
• how "predictable" is the project?
• how innovative (thus unpredictable)?
• how changeable requirements/needs?

We often reward "heroic effort" -- and not the foresight and planning that
make the heroism unnecessary and offer much better ROI. Bosses and
customers used to being shielded from problems and risks may freak if
you use transparency to display all risks and problems with your
projects, even though this puts them in control and maximizes chances
of success and quality. Do you care about being rewarded and praised,
or are you out for Self-Actualization and Transcendence? (See Maslow
Pyramid later)

11

This truth is "fractal" -- applies (in different but similar ways) at all levels,
from projects to huge firms.

12

Modern Fighter Planes...

• are areodynamically unstable
BY DESIGN

• that's the only way in which
they can be as maneuvrable
as they need to be

• so, they require constant
monitoring & adjustment
• "fly-by-wire" processes

Low-Innovation Projects

Relative Amount of Control

Pr
oj

ec
t

Ef
fe

ct
iv
en

es
s

AKA, "the price of [maneuverability and fast response to change] is
constant vigilance".

13

Again, not just "projects" -- conceptually applies to any endeavor and to
whole organizations.

14

High-Innovation Projects

Relative Amount of Control

Pr
oj

ec
t

Ef
fe

ct
iv
en

es
s

6! vs Innovation at 3M
• 6! reduced costs,

increased profits...
• ...BUT innovation may

be flagging at 3M!
• 6!: control, measure,

predict, plan, execute
• but innovation cannot

be made repeatable,
controlled, predicted,
nor sensibly measured
before the fact...

15

Just one example (and far from an open-and-shut case!), but rather
recent and well-publicized.

16

Not Just For Projects...
...traditional approaches to strategy
often collapse in the face of
rapidly and unpredictably changing
industries ... because they over-
emphasize the degree to which it
is possible to predict ...

... change is the striking feature of
contemporary business ... the key

strategic challenge is managing
that change.

Managing Change
• progressively better choices...:
• REACTING to change
• monitor the landscape assiduously
• keep the organization flexible

• ANTICIPATING change
• move proactively with it

• LEADING change
• innovate yourself, before others do it!

• ...and many more bad choices (whine about
it, resist it, undermine it, go into denial, ...)

Brown was a partner at McKinsey (leader of Global Strategy Practice)
when she wrote this book -- soon after she joined Google, where she's
now Senior Vice President for Business Operations. Eisenhardt is
Professor of Strategy and Organization at Stanford.

17

(the list of bad choices for managing change is my own idea, not
necessarily the authors':-)

18

Competing on the Edge is...:
• unpredictable
• it's about surprise, not plans!-)

• uncontrolled
• many moving on their own

• inefficient
• WILL make mistakes -- & fix

• proactive
• definitely NOT passive or reactive!-)

• continuous
• it's a rhythm of moves over time

• diverse
• and diversity makes it robust

Time-Pacing
• event-pacing is reactive
• time-pacing structures chaos
• just a bit:-)
• stops from changing too often
• gets you into "tempo" (rhythm)
• forces periodical "stop what you're doing,

assess effectiveness, adjust strategies"
• (occasional even-pacing still needed:-)

• warning: may easily create a stressful
environment -- act to alleviate that!

...and you're always risking falling off either side of the edge... fun, fun,
fun!-)

19

Setting fixed-time, periodic targets helps: that's unintuitive but
profoundly true -- OSS experiences validating this include Ubuntu and
FreeBSD.

20

And, Back to Tactics...:
• Waterfall: aim, aim, aim, aim, aim, FIRE!
• Chaos: fire!, fire!, fire!, fire!, OOPS, sorry!...
• Agile: aim, fire, adjust; aim, fire, adjust;

aim, fire, adjust; aim, fire, adjust; ...
• iterative and incremental development
• "release early, release often"
• Agile methods try to extract the aspects

that work and apply them with discipline
• ...and pick coding and testing techniques

well-suited to the reality at hand

Macro & Micro Processes
• macro-level has some

"flow", risk-focused (but
also iteration, etc); it's
quite manager-centric

• micro-level is iterative and
incremental (hopefully in a
spiral!-) -- it's quite
developer-centric

yes, there _are_ degrees of "agility" (but no: Chaos isn't one such
degree -- it's a "falling of the edge":-).

21

The concept (of dual macro/micro processes) was extended and refined
all the way to RUP (Rational's Unified Process) -- it never ceased being
controversial though (it's fired upon from both sides, which is often a
good sign:-).

22

• individual and interactions over processes
and tools

• working software over comprehensive
documentation

• customer collaboration over contract
negotiation

• responding to change over following a plan
"while there is value in the items on the
right, we value the items on the left more"

Agile Manifesto

A shorter version
• let's talk to each other
• let's build it, and show it to you
• let's trust each other
• let's learn and adapt, together
• responding to what's happening and to

what we learn

(Jason Yip, jchyip.blogspot.com)

Craftily worded so it's hard even for a dyed-in-the-wool waterfaller to
disagree:-)

23

very worthy blog -- search it for these sentences for more detail

24

Agile principles
• satisfy the customer through early,

continuous delivery of valuable software
• welcome changing requirements
• businesspeople/developers cooperation
• self-organizing teams of motivated

individuals with support & lots of trust
• face-to-face conversations are best
• working software measures progress
• sustainable, maintainable pace
• technical excellence, simplicity, design

Time-Boxing
• "tactical" (agile) equivalent of strategic

level time-pacing
• define fixed-length iterations (2 to 4 weeks

generally best)
• ensure planning at the start of each

iteration, retrospective at each end
• 1 release = N iterations (how to pick)
• an iteration may have finer-grained time

structure in it (e.g.: daily meetings)

do you see where the principles match with the points in the Manifesto?

25

in fact, time-whatevering can help at many levels -- in short, it helps
achieve *sustainable rhythm*, and humans thrive on that (vs stasis or
chaotic flapping). The "sustainable" part of it DOES need nurturing and
proactive support, though!-)

26

Whole-team Ownership
• no "my code"/"your code": it's all OUR code
• enhances team's "bus number", flexibility
• how do you get there?
• uniform team style (& helpful tools)
• strong, growing test-suite (automated!!!)
• enabling "refactor mercilessly" culture
• mandatory code reviews (or pair

programming... -- or, ideally, both)
• the "problem" of specialists
• "grow" them into "semi-generalists"

Pair Programming
• a highly contentious practice -- but very

solid if local cultural conventions can
possibly stand it! (perf reviews, too...)

• not necessarily a substitute for mandatory
code reviews (the pair programs "as one" in
some ways, chiefly in "big picture" issues)

• nevertheless presents many advantages
(bus number, intrinsic training, favorable
impact on team ownership, style, ...)

Of all active practices, maybe the one farthest from "classic" -- and yet
most crucial and productive.

27

You can definitely do Agile without PP -- but if you can use PP (maybe
only some of the time) it can help A LOT.

28

Test-Driven Development
• "prepare the tests in advance of

testing, and, if possible, in
advance of coding" (a quote
from _Weinberg, 1971_...!-)

• a thorough development of this
idea into a methodology,
with practical examples
and explanations:

Good Agile Intro Books

Larman: good, wide, general survey
Cohn: focus on plans, schedules, estimations
Martin: great mix for developer types

"Pure" TDD is more often talked about than practiced, but a large dose
of it can enhance your development A LOT. In particular, ALWAYS write
automated tests that reproduce a bug BEFORE you work to find and fix
the bug (you get "regression testing" nearly for free, this way).

29

I'd recommend Martin's book to anybody who develops software -- and
any manager of development should ensure they know enough
technical aspects to follow that book, too! Larman is really meant for
managers, not developers. Cohn is the best book I know about
planning, scheduling and estimating software development (mostly for
project managers, but really all audiences).

30

Pragmatic & for Developers

Richardson-Gwaltney: not just for "Agile"
projects; very "hands-on", very practical
Subramaniam-Hunt: "devil/angel" takes on 45
agile practices, entertaining AND very useful

More Advanced Agile Books

Schwaber: focus on the Scrum process
Beck: focus on Extreme Programming ideas
Cockburn: wide, deep, profound survey

Both books meant mostly for developers, but won't hurt managers one
bit ("Ship It!" very useful for project managers in particular, "Practices"
for anybody wanting "a taste of agile development" even if without much
technical background)

31

Scrum (mostly with a project-manager orientation) and XP (mostly with
a developer-orientation) are probably the two most widespread Agile
methods. Cockburn's book is the deepest and most profound survey on
Agile that I've ever read: I recommend rereading it every year or two,
you'll keep getting more and more out of it as you grow with experience
(thus, a true classic).

32

Scheduling and Planning
• start LOW-tech (a spreadsheet, or

whiteboard+stickies, or index cards...)
• pick very fine-grained tasks (to combat

developers’, and your own, optimism!-)

• schedule vacations, holidays, training, sick
days (proactively fight to avoid burnout!) --
what can't be scheduled deterministically can be
scheduled "statistically" (adv: schedule RANGES,
NOT "point estimates" w/unknown uncertainties)

• heed Cohn’s advice: estimate size, derive
duration (&, size in arbitrary units * velocity)

The Burndown Chart
shows per-iteration progress AND changes
in scope in one bird's-eye view

Cohn has many, many more useful pieces of advice -- but DO keep the
two bits about fine-grained tasks and "schedule everything" as top
priorities!-)

33

There are many form of "burn-down charts" (plotting "remaining efforts
in project's backlog" versus time): I like the ones, like the one I show
here, where added requirements show "the bottom falling away" (not the
developers' fault...:-).

34

Managing Professionals
• software developers are highly skilled

professionals
• if yours aren't, then that's your FIRST

priority to address!!!
• if they are, INVEST in them (they ARE

your greatest asset, bar none)
• your job: point them in the right direction,

help teams jell, help them grow, keep track
of progress, blocks, and risk, coordinate

• NOT your job: MICROmanage them!-)
• ...what about MOTIVATION...?

Human Motivation

Transcendence
Self-Actualization
Aesthetic, Delight
Cognitive, Learning
Esteem, Recognition
Belonging, Affection

Safety, Security
Physiological, Survival

Maslow's general
ideas on human

needs are good...:

...but, not coming
necessarily in

bottom-up order!

Hiring well is VERY difficult (I've heard good things about Joel's latest
book, "Smart and Get Things Done", which is right on the subject, but
haven't read it myself yet at the time of writing). Removing from the
team/organization people that are wrong for it is, or SHOULD be, even
harder (you ARE messing with another person's life -- if that doesn't
make you shudder, I'm worried), but nevertheless crucial for the success
of the project, team, firm, etc.

35

Most places quote the simpler, older 5-level version, but I'm very keen
on this one (from Maslow's later works). "Transcendence"s main
manifestation is "helping others *for the sake* of helping others" (not for
reciprocity, belonging, to get praise, etc), and I concur it IS the highest
peak of human achievement, beyond even self-actualization (that may
be part of what makes it so hard for many to accept at face value when
it does show up...). As for order, it's obviously NOT linear -- e.g.,
soldiers often risk their lives (survival and safety levels) for the sake of
their "unit" (belonging, recognition), etc.

36

The engaged employee
• I know what’s expected
• tools, materials, equipment
• I often/mostly get to do

what I do best
• I get recognition, praise
• manager cares about me
• " encourages my growth
• my opinions matter here
• I connect w/the mission
• quality matters here

No mere cogs in the wheel
• learn all you can about your developers’

specific, individual strengths & weaknesses
• particularly tech leads and subordinate

managers, if any, but not just them
• play to their strengths
• plan ways for them to outgrow weaknesses
• coaching, training, books, pairing, ...

• making unreasonable demands can burn
them out (watch out for burnout!!!)

• making only fully reasonable demands
provides no challenge (stretch goals)

The exact wording of the 12 principles is claimed as copyright by the
book's authors, so I've paraphrased the ideas behind them (ideas can't
be copyrighted, thanks be!) --actually, only the nine out of 12 that I think
matter most in this context (the authors correctly point out how difficult it
is to fit considerations of _compensation_ in there!). Exercise: match
each element to the relevant points in Maslow's Pyramid.

37

Managing professionals as if they were "interchangeable parts" is the
single worst source of management mistakes. Professionals (good
ones, especially) thrive on challenge -- but you have to balance that
(stretch goals) with avoiding their burning out.

38

Can Just Anybody Do It?
• probably not -- it takes some "talent"!
• there are techniques you can learn,
• and experience and reflection will help,
• but some things, you have, or you don't

• you must really CARE about your people
• and ALSO care about the team's results

• you must be able to deal with interrupts
• time management techniques are good,

but no panacea -- interrupts WILL occur
• you must inspire, feel, and nurture TRUST

Becoming a Leader
• "is not something that

happens to you, but
something you do"

• "all leading is leading
change": Motivation,
Organization, Ideas

• "always be sincere
(whether you mean it
or not)"

This is contentious -- Weinberg, e.g., claims any technical person can
become a better technical leader than they are right now, if the
motivation for so doing is "pure" (see next slide). I think there are some
"inborn" prereqs, but it's hard to prove either way.

39

The third point is obviously a funny quip -- but there's depth behind it,
just like there is behind every funny anecdote and homily in this
excellent book. A book that can easily be appreciated at any level of
experience but will give you more and more in proportion to what you
have to start with, and what you put into reading, studying, and applying
it in your life.

40

Trust...

Trust begins at home
• to be worthy of others’ trust, you must

first be worthy of your own!-)
• This above all: to thine own self be true,

And it must follow, as the night the day,
Thou canst not then be false to any man

• don’t tell yourself little white lies...!
• “above all, don’t fool yourself, don’t say

it was a dream, your ears deceived you:
don’t degrade yourself with empty hopes
like these” (C. Cavavy, “The god forsakes Anthony”)

Trust, and the consequent ability to delegate, are common to all area of
"knowledge work" (or so I firmly believe, though my first-hand personal
experience is limited to electronics and computers); here I illustrate the
issue with a brief snippet from an immortal movie, "All the President's
Men".

41

This kind of consideration applies more widely, as Weinberg points out
well -- e.g., a prereq for respecting others is to respect yourself. I focus
on trust because it's so incredibly important -- and "being worthy of self-
trust" (the courage to tell yourself the truth and live by your principles)
sometimes a huge challenge to all managers (and others).

42

Trust Builds Firms, Economies

The satisfaction we derive from being connected
to others in the workplace grows out of a
fundamental human desire for recognition.

Trust...
• is mutual, and built up over time
• you must earn & deserve developers’ trust
• technical ability & “technical currency”
• true, not faked, interest in them as

individuals, within and outside work
• they must earn & deserve yours
• tech skills, integrity, goal-focusing
• but: always start “trusting by default”!
• helpful prereq: hire VERY selectively!-)

Fukuyama's take on trust is chiefly that of the historian, though I've
picked a quote that ties back to the issue of motivation. You really
should read the book, but the key idea is that the ability to trust
strangers is present to different degrees in different cultures, and is a
prereq for the modern form of capitalism (as opposed to purely family-
based, thus smaller, enterprises).

43

Pointing out the most important issues in the two-way exchange of trust
between manager and developers -- and the (I hope:-) non-obvious
connection back to hiring. You don't hire just for technical excellence --
character and personality are ALSO key.

44

Trust is a Virtuous Circle

More about Trust...

Trust can build on itself, gradually and progressively (of course, a
breach of trust can similarly snowball into very justified MIStrust;
perhaps the most common example in our context is the manager that
tries to grab credit for himself, or shunt blame to developers, rather than
properly taking his responsibilities and giving credit to his people).

45

Axelrod works on simple but interesting mathematical models and
simulations of "prisoner dilemma" (and has further published more work
on the subject). Covey's is a typical, high-quality "self-help-style" book
(like his dad's:-). Ridley starts from a biology (particularly, genetics)
perspective, but in this book tries to tie in threads from economics
(including game theory), sociology, anthropology, ... You shouldn't read
JUST about management theory and software development issues,
after all...!-)

46

Trust, but Verify
• -> delegate, but oversee
• "delegate" does NOT mean "abdicate"
• -> you remain entirely responsible if

anything you've delegated blows up
• -> "joint and several" responsibility

• tools for effective, unobtrusive oversight
• daily meetings
• burndown charts & other info radiators
• automatic emails on source commits
• short, regular 1-on-1 meetings

Who decides?
• in final analysis, YOU do -- but you may

decide to defer to somebody else's decision!
• they may be more "on the ball" than you
• it may be a low-impact decision that can

be reversed (if need be) at low cost --
then, give them a chance to learn, grow

• you don't need to "prove yourself": you
get judged, in the end, by the success of
the project, not by your own personal
contributions to that success

• so, back off more often than you think!

Yeah, the title's a quote out of context:-). But the key is: you keep
responsibility for all you delegate; the best mechanisms to let you keep
an eye on things are just the same that help *project transparency* all
around, plus 1-on-1 meetings (which you should have anyway) to find
out about things that escape the "transparency" mechanisms (mostly
"people issues"). A formal mentor relationship *outside* the reporting
chain is also extremely useful (doesn't help YOU, but helps the FIRM...).

47

Don't hog decisions, don't shun them -- stay dynamically balanced on
the edge. Let them make mistakes (we learn best from our own
mistakes), whenever you can afford to... and once in a while the
"mistake" will prove to be brilliance (then be ready to applaud and give
credit!!!) To manage well, you need a good enough sense of self-worth
that you don't feel the need to assert or prove yourself to confirm your
self-worth -- you CAN and WILL let others have their day!

48

Where does one find time?
• NOT in working incredibly long hours

• aim for 40 !
• settle for 45 "
• 50 is right out #

(Note: I mean actual work time, net of [e.g.]
blogging, snacking, surfing, chatting...!-)
• nor in extensive telecommuting (face-to-

face is the most effective form of
communication, and communication is the
most crucial part of any manager's job)

• time management works, when done right

Working Long Hours

Average Hours Worked per Week

Pr
od

uc
ti
vi
ty

 (
$/

ho
ur

)
There's a warped sense of pride in "working" 60-hours weeks -- but it's a
horrid idea (even if you're used to it, you're unlikely to be producing at
the top of your potential). Telecommuting's a very sweet dream... but
face-to-face still IS best! So, you need a set of techniques, tricks and
tips known classically as "time management" (or more modernly as
"getting things done").

49

Of course, this is merely indicative (e.g., I know that at my best I'm
worth more than $100/hr!-), but I hope it leaves the right impression --
there is SOME number of work hours per week where your productivity
is maximal, and if you way overdo it your productivity will go negative --
by working in a far-too-tired state you'll do DAMAGE (negative value).
Actually, it's been measured that the productivity per-hour of French
workers (lowest hr/year in G8) is higher than in the US (highest), though
the total production of _France_ as a whole suffers (Sarkozy promises
to make them work more hours/year -- and yet he WON!-)

50

• if the schedule is slipping, do not try to
make up time by forcing your developers to
work even harder: it will exacerbate the
problem. Acknowledge reality: relax
schedule constraints, reduce functionality,
or both. To do neither is folly.

• you've misplanned/misscheduled
if 60+ hours/wk are the norm:
overtime as common practice is
unsustainable AND an indication
of severe mgmt malpractice.

Booch Against Overtime

When pace's unsustainable
• productivity loss -- even production loss
• no (time) "reserves" for emergencies
• if you're running flat out, and an

emergency requires a sprint, now what?
• a wise general keeps a reserve...!

• things get worse as it drags on (and on)

one key issue: are you
rewarding RESULTS or

EFFORT? "You'll get what
you measure"!-)

OCCASIONAL weeks at 60, 70, even 80 hours of actual work are
inevitable -- emergencies, urgencies, and so on. But *keep them
occasional*, for yourself as much as for your reports. Remember: it's a
marathon, not a 100-meters dash!

51

The "key issue" about performance measurement and rewards is truly
key. Again, it's too easy to reward "heroic efforts" rather than good
strong planning which saves the needs for such efforts and obtains
better RESULTS.

52

A Better Approach
• it’s not just for SAs:
• at least 80/90% is good for
developers and managers

• esp. w/operational duties
• brief, useful summary talk:
• http://video.google.com/videoplay?

docid=7278397109952382318

• key ideas: focus & interrupts,
single TODO list & its handling,
building routines, prioritization

Limoncelli on Interrupts
• they're inevitable, so we must manage them
• "interrupt-driven" work's VERY inefficient

• main strategy:"delegate", "record", "do"
• direct interrupts away from you (to the

proper target for them) -- you're NOT all
powerful, nor responsible for EVERYthing

• acknowledge it, write it down, DO LATER
• if <2 minutes, DO NOW

• "mutual interrupt shield"
(and other "flappers":-)

Tom's first-person experience is as a (great!) system administrator, so,
quite rightly, that's what he writes about -- but his observations and tips,
for the most part, do generaize to all of us.

53

"Deflecting" and otherwise managing interrupts is a technique I single
out because it's quite as important for managers as it is for sysadmins.
The "mutual interrupt shield" (unless you're high up enough to warrant
an administrative assistant, and, even then...) is a particularly useful,
although non-obvious, technique for managers.

54

Interrupts and Flow
• managing interrupts (among other pluses)

helps you get into a "flow" state
• you still have to deal with many interrupts
• learn to tell what can wait 1 hour
• learn to “push something on the stack”,

provide immediate attention to s/thing
else, pop the stack and go right back

• in the end, it’s possible that one just isn’t
designed for multitasking -- management
inherently requires a lot of it, though!

Time Mgmt 101 for mgrs
• schedule many, regular, short meetings
• never a problem if a meeting ends early
• cancelable at last minute in emergencies
• always, promptly take “sidelines” offline
• punctuality saves time for everybody
• don’t schedule meetings back-to-back!

• always think about who should be there
• easy but wrong to slip into a “when in

doubt, invite them” mentality
• always be ready to snatch opportunities
• laptop, book, Blackberry/PDA, WWFY

"Getting into the flow" can make your productivity 2 or 3 times better as
long as you can maintain it -- and that's one crucial advantage of good
interrupts-management (there are many others, mind you -- prioritization
and proper sequencing, etc). But, in the conditions of a typical manager,
I've observed people who just can't deal properly with the high rate of
interrupts, even though from many viewpoints they'd make good
managers -- they should change back to the IC track, maybe as "tech
leads" if feasible.

55

Here are a couple of elementary but crucial tips specifically for
managers (the "snatch opportunities" one applies more widely;-).

56

Time Mgmt 102 for mgrs
• consider each piece of work specifically
• does it really need to be done at all?
• if so, am I the best person to do it?
• &, when should it optimally be done?

• don’t let emergencies emerge!
• a stitch in time saves 9.4247779677

• schedule ~50% of your “discretionary” time
each week for not-(yet!-)-urgent “fillers”
• a wise general strives to keep a reserve
• can be rescheduled for emerging work
• don’t wait until they are urgent!

"Manage Actions, not Time"
•highly non-specific (manager
oriented, but not hi-tech)

• has many enthusiasts, a real
“movement” around it

• http://www.davidco.com/
•key ideas: mind like water,
single in-basket, highly
structured flow, action steps,
“two minutes rule”

doesn’t quite work for me, but, works well for many!

These are a bit more advanced, but no less crucial. Care to guess what
that weird number IS, btw?-)

57

I'm not really into the GTD movement, myself; but I've seen it work great
for many, so I feel I must at least mention it!

58

Helping Teams Jell
• face-to-face interactions are the key
• the daily ones are the most important
• consider "daily meetings" for that
• "offsites" and celebrations matter too
• are non-colocated "teams" possible...?
• OSS lessons: spread-out teams+sprints
• we're always looking for tech fixes...:-)

• "whole-team ownership" can help too
• balance between uniformity and diversity
• are YOU part of the team? SHOULD you?

Team Sizes
• 2-4 generalists: minimum sustainable size
• 1-person "team" fragile, high-variance, ...
• no space for specialists within the 2-4!
• "fraction of a person" hard to sustain

• 5-12: "sweet spot" zone (if some level of
"specialist" knowledge/skill is needed)
• you may be able to afford (up to) about 1

specialist per 3-4 generalists in the team
• 13+: increasingly hard to coordinate
• consider splitting team if at all feasible

Teams are what really matters most, and many aspects can help a team
"jell" and become MUCH more productive -- chiefly the right kind of face
to face interactions, but issues of "ownership" and uniformity vs diversity
also play key roles. A crucial question (that I'm still leaving open -- more
foreshadowing!-) is whether the manager CAN, and SHOULD, be
part of the team s/he manages.

59

I've seen alleged "teams" of 40 or more people -- but "alleged" is key
here;-). More often these days you see single people assigned as the
whole "team" for small sub-projects, but that's far from optimal either. If
I could have my pick, I'd have 4 generalists when I can do w/o
specialists, or about 2 specialists and 7 generalists when the specialists
are crucial to a given project (and use already-mentioned techniques,
such as PP, to "grow" the specialists AND the generalists at the same
time). Splitting one person across multiple teams has its own issues
(though sometimes it's the least of evils, typically for a specialist and
many smallish teams).

60

Vary team over time?
• a semiclassic "optimized" approach (in RUP)

• however... what does that do to the TEAM?

How many can YOU manage?
• ...and manage WELL...?
• varies by oversight needs, location, ...

• and, what else do you do besides that?-)
• direct reports: 6, a breeze; 12, good; 24,

stretching it a bit; 48 "is right out"
• +: count indirect reports as a fraction

RUP is Rational's Unified Process. Systematically changing staffing
levels and composition over a projects' macro-terms lifecycle seems an
obvious approach... but you SHOULD consider what it WILL to do
team's cohesion and "jelling". I'm NOT advocating "stationary" teams --
projects SHOULD have a beginning and an end, and so (on a longer
timescale) generally should team's lifecycles -- but DO consider the
people (and their ineffable dynamics as a jelled team!), NOT just the
single task!!!

61

In one team or several, there IS a limit to the number of people you can
manage effectively, depending on how much hand-holding (or shielding,
oversight, etc) your people need, whether you have other things to do
besides people-managing, etc. If you're a second- or higher-level
manager, don't forget to count SOME fraction of your indirect reports --
they WILL at least occasionally need your direct attention and
involvement (you DON'T want to ossify the organization in order to
avoid that, believe me!)

62

• e.g, "caves and common" arrangement:

A Team's "Geometry"

"Commons" (team)
work area

Private
Workstations

("Caves")

The HyperProductive Dev'l
• estimated to be 4-10 times as productive as

"normal" good developers (some sources
quote estimates up to 30)

• these apply to only SOME phases of the
development lifecycle (typically: low-level
design, coding, debugging, optimizing)

• how do you fit him/her best into the team?
• can s/he help teammates grow?
• or, will they just slow him/her down?
• does s/he have, or want to grow, any

leadership qualities?

There are many, MANY other possibilities -- alas, I'm not an architect,
but I want to point out that this issue needs care too.

63

A nice problem to have, in a sense;-). But, problem (or, "opportunity":-)
it sure is. How do you let the HPD fully express his or her incredible
productivity while NOT damaging the team and other members thereof,
and indeed HELPING them grow...? It's a subtle and complex question,
depending more on "human" factors than technical ones. Good
solutions, depending on those factor, may range from making the HPD
an exception to the rule of "no 1-person teams", to deploying him as a
roving consultant across many teams for his/her areas of strength -- but
often integration with one team will also be possible.

64

Development Tools
• what needs to be standardized?
• language, lib, style, standards for testing,

release engineering, communication
• source-code control, issue-tracking, build

scripts (ideally: continuous integration),
testing (AUTOMATED, at ALL levels!)

• many other tools need not be uniform
• editors/debuggers/IDEs, OS to be used

for development, mail/&c clients, ...
• let a thousand flowers bloom (wherever

that is sensibly feasible!-)

Can you be IN the team?

“Once you have four or more
people in your group, you can’t

perform technical work and still
be a great manager.” (Wk 6)

“Managers are not usually part
of the teams that they

manage ... leadership just doesn’t
have much place here.” (Ch 23)

People want to "mark their space" -- let each developer happily use their
favorite editor, debugger, IDE, etc. But you must stand firm on other
issues: the key SHARED tools are versioning system, issue-tracking
system, continuous integration and automated testing system (the 3 had
better be well harmonized and integrated, too:-). Also, there needs to
be consensus on programming language (and style, libraries,
frameworks, ...), and standards for testing levels, release/deployment
activities, docs and other forms of communication -- all indispensable
issues to afford "whole team ownership", an absolutely crucial practice.

65

Two excellent books (which I both heartily recommend) that strongly
endorse a traditional idea: the thesis that managers can never do
technical work, be part of their teams, exercise real "leadership"...

66

Maybe you can, & should...
“Tech leads split their time
between development tasks
and management tasks, not
working exclusively in either
realm.” (T.15: Let a tech lead)

ONE possible way to manage software
development is to "get your hands dirty"
with it (definitely not the ONLY one...!-)

Shd you be a coxswain...?

• "with" rowers (coxswain doesn't row, just
steers & directs!-) are sometimes faster...

• ...but not ALWAYS, sometimes coxless's best
(key issue: how many rowers?)

...and another excellent book arguing otherwise. So maybe, while not
the ONLY way, ONE way to manage knowledge workers IS to be (part-
time) one of them...?

67

Rowing lets us argue both ways -- for large-enough teams of rowers, a
non-rowing coxswain appears to be a plus; but for smaller boats, the
"without" times appear better;-)

68

At times you MUST pitch in
• "When time and labor

are running short, stop
working on ['big' things]
and just pitch in [...] some
would-be leaders have
such an inflated image of
themselves that they
cannot stoop to mere
implementation" (!)

• ...but, why wait for the
"running short" stage?-)

One way to manage SW
• say that manager M is a technical peer of

the developers (design, code, debugging...)
• M can nurture mutual trust, interaction and

respect by and for the developers by
deploying him/herself as a “wildcard
technical resource”
• not for the “fun” tasks, but, rather,
• for urgent ones requiring an extra pair of

hands brain hemispheres right now,
• be they fun or (preferably!-) chores

• many objections should come to mind here...

Weinberg is talking about generating ideas vs executing on them -- but I
think this generalizes well... except that you shouldn't wait for
emergencies where "time and labor are running short" before you DO
pitch in -- that's very much the wrong approach.

69

So here's my core thesis, which I've been pushing for years -- one
approach to let a technical manager "get their hands dirty" in SOME of
the team's professional work.

70

Wait, but, what about...
If you’re following critically, you should have
one or more of the following objections...:
1. what about Brooks’ Law?
2. shouldn’t a manager always delegate?
3. must be neglecting “real” mgmt work!
4. it’s a waste of technical talent.
5. ...supply your own objections...:-)

Brooks’ Law
“Adding programmers to a late
software project makes it later”

• Yes, but: everybody always omits
the immediately-preceding
qualification: “Oversimplifying
outrageously, we state”...!-)

• also: just don’t let it become late!-)

Based on extra time for extant programmers to bring
new ones up to speed + extra communication overhead

If a manager is always up-to-speed, & always
communicating: no extra overhead ! no Brooks’ Law

Of course, many objections usually get raised here (I'm selecting a
subset compared to what I do when I teach about this very specific idea
exclusively, rather than about management in general as I do here:-).

71

I LOVE Brooks -- but his Law is often misquoted, misused, and
misapplied.

72

Shouldn’t a mgr delegate?
• sure, but, delegate what?
• delegating doesn’t remove responsibility
• always stay up to speed on projects!
• you must trust your developers to do

what’s right -- but, fulfil your part of
the bargain, to enable them to do it!

• once developers see that your tech
contributions are excellent,
• and trust you to properly give credit,
• they’ll want you involved AMAP!

Neglecting “real” mgmt?
• there is no “realer” management work than

this set of tasks: nurturing trust, caring for
your people, helping teams jell, keeping
careful track of your projects, helping your
people grow, focusing on goals & priorities

• nothing wrong with writing some unit-tests,
critiquing a design, or slogging through a
deucedly hard debugging session, since it
helps you accomplish all of these tasks!

• besides, this way we get to have some
hacking fun, too: avoids US burning out!-)

Delegation is not abdication, as I've already covered in this tutorial.

73

"Real management" is anything and everything real (successful)
managers do, that helps their projects!-) Balance is needed (as it
always is "out here on the edge":-) -- don't hog the fun tasks, don't
override your tech leads and make their jobs irrelevant, don't take credit
for technical accomplishments, etc, etc -- but part of the balance is
getting the challenge and fun to deal directly with hard technical tasks,
at least once in a while!-)

74

Waste of tech talent?
• it’s not wasting, but leveraging it!
• there ARE places where management is

only for those who have nothing more to
contribute technically... but not
SUCCESSFUL ones!-)

• “but isn’t leverage high only in design”?
• no way!
• “the devil is in the details”
• and where’s a devil to be fought, that’s

where the best exorcists are needed!-)

• http://www.randsinrepose.com/archives/
2007/02/07/technicality.html

• "get the team to solve this problem
without you coding" ... Good advice,
huh? ... Too bad I'm wrong.

• Wrong? Yup. Wrong. Not totally, but enough that
I might need to make some calls to past co-
workers and apologize. "That not coding pitch
of mine? Wrong. Yeah. Start programming
again. Start with Python or Ruby. Yeah. I mean
it. Your career depends on it."

That's kind of the flip objection to the last one -- that great techies
should never move on to management to avoid "wasting" their tech
talent (or, in a more attenuated form: that they should strictly focus on
"upstream" activities, not coding, debugging, docs, deployment,
testing, ...). Successful organizations in the hi-tech field MUST have
good ways to balance leadership and technical contributions (dual
ladders AND ways for people to "straddle" both ladders, hop back and
forth between them, etc:-).

75

I was particularly happy, a good while after I'd started my solo crusade
to allow tech mgrs SOME hands-on tech contributions, to see one of my
favorite bloggers on technical management issues pick up on exactly
the same theme. Lopp's book is good, too (if you can stand books
taken/inspired from blogs -- I'm OK w/them). And his ability to state he
was wrong, and apologize, comes VERY close to PROVING he's a
great manager (and all-around human being), not just a great writer
about it!-)

76

Ars longa, vita brevis...
more books than one can make time for!-)

Q?
A!

Mintzberg (many books) is at the same time a Solon of
management teaching, and a trenchant critic of current
pratice in the field. Berkun has many good tips and
some interesting deep reflections on project
management. FIT (and Fitnesse) are great ways to
develop test-driven SW (at acceptance-test level,
roughly). Feathers is great if you need to deal with
untested, badly documented legacy SW (don't we all!).
Britcher is pessimistic but worth reading (and
critiquing). "Dreaming in Code" is the best case study
yet on "why do bad things happen to good project" --
Rosenberg has no prejudged idea, gives you lots of info
and lets YOU judge.

77

I hope the whole tutorial was VERY interactive, but, this
is the right place to ask any questions you omitted to
ask DURING it (I'll also be around through OSCON and
available for more discussion -- I LOVE these
subjects!-).

Thanks for attending this tutorial - and for all that, I
feel sure, YOU taught ME during Q&A and other
interactions!!! Alex

78

