
©2009 Google -- aleax@google.com

Python 3000

Alex Martelli,
w/many thanks to:
Guido van Rossum

http://www.aleax.it/gs_py3k.pdf

Audience levels for this talk

2

Shu

Ha

Ri

("Retain")

("Detach")

("Transcend")

Why Py3k
“Open source needs to move or die” [Matz]

kind of like... sharks!-)
Fix early design mistakes

classic classes, int division, print stmt, ...
Time/space trade-offs change w/time

str/unicode, int/long, ...
New paradigms

iterables vs lists, arg annotations, ABCs, ...
So: need for backwards-incompat changes

AKA... "breakages"!-)

3

Major Breakages
Print function: print(a, b, file=sys.stderr)
Distinguish sharply between text and data

b"…" for bytes literals
"…" for (Unicode) str literals

Dict keys() gives set view (items, values too)
use list() in the rare case you need one!

No default <, <=, >, >= implementation
ordered-comparison only when explicit

1/2 returns 0.5 (not 0!)
use 1//2 for explicit truncation

4

More Break[age] Dance
No more "classic classes"
Int/long unification
No more "string exceptions"

Exceptions must subclass BaseException
Exc syntax:

raise Exc(args) [from tb]
except Exc as var: ...

5

Many Small Breakages
remove: `...`, <>, apply, basestring,
buffer, callable, cmp, input, reduce,
reload, cmp arg to sort, dict.has_key,
map(None...), tuple args, sys.maxint, lots
of stdlib (compiler, gopherlib, md5, ...)
kw: None, True, False, as, with, nonlocal
rename: xrange→range, _nonzero_→_bool_,
raw_input→input, .next→_next_, func_xxx →_xxx_
&: relative import, return iterators from map/filter,
metaclass syntax, octal literals, &c, &c

6

But...: New Features!
Argument annotations:

def f(a: 2*2, b: 'hello') -> 42: …
Abstract Base Classes
Extended iterable unpacking:

a, b, *x, y = range(5) # 0, 1, [2, 3], 4
New str.format() method:

"Got {0} {kind}".format(42, kind='bugs')
"Got 42 bugs"

dictcomps, set lits & comps, binary lits, bin(),
class decorators, _prepare_, stdlib stuff ...

7

Why move Py 2 -> Py 3
Simpler, richer Unicode handling
Smaller, simpler language

makes “Python fits your brain” more true!
OOWTDI (Only One Way To Do It)
Fewer surprises, exceptions to rules, traps
and pitfalls, and more generally less cruft
why wait a bit, if py3 is a better language?

mostly, if you need 3rd party extensions
or tools that don't support py3 yet!
stay portable to .NET, JVM, embedded...

8

The '2to3' Tool
Context-free source-to-source translator
Handles syntactic changes best

E.g. print; `…`; <>; except E, v:
Handles built-ins pretty well

E.g. xrange(), apply(), d.keys()
Limits...:

Doesn’t do type inferencing
Doesn’t follow variables in your code

9

When To Switch
No hurry! 2.6 is (& will be) fully supported

Probably 3-4 years or more
Release of 2.7 likely, 2.8 possible

2.9 less likely; 2.10 is right out;-)
Switch when both of these facts hold:

1. You’re ready
2. All dependencies have been ported

Tools like 2to3 to help you switch!

10

Be Prepared
Start writing future-proof code for 2.5/2.6
Don’t bother with the trivial stuff:

The 2to3 tool handles much of this
E.g. callable(), `…`, <>, L suffix in long

Focus on what 2to3 can’t do:
Stop using obsolete modules &c
Start using iterators and generators

11

Things You Should Do Now
Inherit all classes from object

and all exceptions from [Base]Exception
Use dict.iteritems() etc.
Use xrange(), sorted(key=...)
Use // for floor division
Define rich comparisons (__eq__ & friends),
NOT __cmp__
in general: use Python 2.5 / 2.6 as such, do
NOT rely on their "legacy" features

...whether you plan a Py3 port or not!-)

12

What About Text Handling
No silver bullet
Isolate handling of encoded text
In 2.6:

Use bytes and b'…' for all *data*
Even though they just alias str and '…'

Use unicode and u'...' for all *text*
In 2.5: '...' for data, u'...' for text

13

Python 2.6
Stable, compatible, supported!
Many new 3.0 features backported

But not the new text / data distinction
Warns about non-3.0-isms with ‘-3’ flag

Especially things that 2to3 can't fix

14

Transition Strategies
If you can: burn your bridges! :-)
Otherwise:

Port to 2.6 first
Maintain 2.6 and 3.0 version together
a good suite of tests is crucial!!!
Derive 3.0 version from 2.6 source

Use 2to3 whenever you can
Fork code only where you have to

15

Porting C Extensions
Fork your code or sprinkle with #ifdef
We try to delete APIs or add new ones

But not break existing APIs that stay
& type of arguments won't change

2.6: str, unicode -> PyString, PyUnicode
PyBytes is an alias for PyString

3.0: bytes, str -> PyBytes, PyUnicode
Also: PyInt vs. PyLong

16

Release Schedule
2.6 and 3.0 final: both on 10/01/2008
2.6.1: 12/04/2008
3.0.1: 02/13/2009
current: 3.1 α 2 (04/04/2009)
future: 3.1 β early 05/09, final late 06/09

collections.OrderedDict, importlib, lib
updates (IO, email, ipaddr, ipaddr, etree...)

future: 2.7: no schedule fixed yet

17

Resources
http://python.org/ & links therefrom
Books:

Python 3 for Absolute Beginners (APress)
haven't seen it; target date Apr 20

Programming in Python 3 (AW)
haven't reviewed it; out since Dec 26

Python 3 in a Nutshell (O'Reilly)
Anna & I started on it, "rough cut" PDF
version by Christmas (no promises!-)

Dive into Python3: diveintopython3.org

18

Questions & Answers

19

Q?
A!

http://www.aleax.it/gs_py3k.pdf

