Python 3000

http://www.aleax.it/gs_py3Kk.pdf

Alex Martelli,

w/many thanks to:
Guido van Rossum

Audience levels for this talk

Why Py3k

@ "Open source needs to move or die” [Matz]
@ kind of like... sharks!-) 'y

@ Fix early design mistakes i
@ classic classes, int division, print stmft, .

@ Time/space trade-offs change w/time
@ str/unicode, in’r/long,

@ New paradigms &) €5
@ iterables vs |IS1‘S arg annotations, ABCs,

@ So: need for backwards-incompat changes
@ AKA... "breakages”!-)

iy ()’r_',./

3

Major Breakages

@ Print function: print(a, b, file=sys.stderr)

@ Distinguish sharply between text and data
@ b".." for bytes literals
@ ".." for (Unicode) str literals

@ Dict keys() gives set view (items, values too)

@ use list() in the rare case you need one!
@ No default <, <=, >, >= implementation
@ ordered-comparison only when explicit

@ 1/2 returns 0.5 (not 0O!)
@ use 1//2 for explicit truncation

4

More Break[age] Dance

@ No more “classic classes"
@ Int/long unification
@ No more "string exceptions”
@ Exceptions must subclass BaseException
@ Exc syntax:

@ raise Exc(args) [from tb]
@ except Exc as var: ..

Many Small Breakages

@ remove: ... , <>, apply, basestring,
buffer, callable, cmp, input, reduce,
reload, cmp arg to sort, dict.has_key,
map(None...), tuple args, sys.maxint, lots
of stdlib (compiler, gopherlib, md5, ...)

Kkw: None, True, False, as, with, nonlocal

rename: xrange—range, _nonzero_—_bool_,
raw_input—input, .next—=_next_, func_xxx —_Xxxx_

&: relative import, return iterators from map/filter,
metaclass syntax, octal literals, &c, &c

Buft.... New Features!

@ Argument annotations:
o def f(a: 2*2, b: 'hello') -> 42: ...
® Abstract Base Classes
@ Extended iterable unpacking:
@ a, b, *x, y = range(5) 0,1, [2 3], 4
@ New str.format() method:
@ "Got 10} {kind}".format(42, kind='bugs')
@ "Got 42 bugs"

@ dictcomps, set lits & comps, binary lits, bin(),
class decorators, _prepare_, stdlib stuff ...

(2t ()’r_',./

Why move Py 2 -> Py 3

@ Simpler, richer Unicode handling
@ Smaller, simpler language

@ makes "Python fits your brain” more true!
@ OOWTDI (Only One Way To Do It)

@ Fewer surprises, exceptions fo rules, fraps
and pitfalls, and more generally less cruft

@ why wait a bit, if py3 is a better language?

@ mostly, if you need 3rd party extensions
or tools that don't support py3 yet!

@ stay portable to .NET, JVM, embedded...

o ()’r_',./

The '2to3' Tool

@ Context-free source-to-source translator
@ Handles syntactic changes best

@ E.qg. print; "...7; <>; except E, v:
@ Handles built-ins pretty well

@ E.g. xrange(), apply(), d.keys()

@ Limits...:
@ Doesnt do type inferencing
@ Doesnt follow variables in your code

When To Switch

@ No hurry! 2.6 is (& will be) fully supported
@ Probably 3-4 years or more
@ Release of 2.7 likely, 2.8 possible
@ 2.9 less likely; 2.10 is right out;-)
@ Switch when both of these facts hold:

@ 1. Youre ready
@ 2. All dependencies have been ported
@ Tools like 2103 to help you switch!

o)

V] |

Be Prepared

@ Start writing future-proof code for 2.5/2.6
@ Dont bother with the trivial stuff:

@ The 2to3 tool handles much of this

@ E.g. callable(), °...", <>, L suffix in long
@ Focus on what 2t03 cant do:

@ Stop using obsolete modules &c
@ Start using iterators and generators

Things You Should Do Now

@ Inherit all classes from object
@ and all exceptions from [Base]Exception
@ Use dict.iteritems() etc.
@ Use xrange(), sorted(key-=...)
@ Use // for floor division

@ Define rich comparisons (__eq___ & friends),
NOT _cmp__

@ in general: use Python 2.5 / 2.6 as such, do
NOT rely on their "legacy” features

@ ..whether you plan a Py3 port or not!-)

(2t ()’r_',./

What About Text Handling

@ No silver bullet
@ Isolate handling of encoded text
@ In 2.6:
® Use bytes and b'...' for all *data™
@ Even though they just alias str and ...’

® Use unicode and u'...' for all *text*
@ In 2.5: '.." for data, u'..." for text

Python 2.6

@ Stable, compatible, supported!
@ Many new 3.0 features backported
@ But not the new text / data distinction
@ Warns about non-3.0-isms with '-3’ flag
@ Especially things that 2to3 can't fix

=24
P
/

Transition Strategies

@ If you can: burn your bridges! :-)

@ Otherwise:
@ Port to 2.6 first 1A
@ Maintain 2.6 and 3.0 version together
@ *a good suite of tests™ is crucial!!!

@ Derive 3.0 version from 2.6 source
@ Use 2103 whenever you can
@ Fork code only where you have to

Porting C Extensions

@ Fork your code or sprinkle with #ifdef

@ We try to delete APIs or add new ones
@ But not break existing APIs that stay
@ # & type of arguments won't change

@ 2.6: str, unicode -> PyString, PyUnicode

@ PyBytes is an alias for PyString
@ 3.0: bytes, str -> PyBytes, PyUnicode
@ Also: PyInt vs. PyLong s TIPS

Release Schedule

® 2.6 and 3.0 final: both on 10/01/2008

o 2.6.1: 12/04/2008 \
@ 3.0.1: 02/13/2009 s
@ current: 3.1 « 2 (04/04/2009) N‘J
@ future: 3.1 B early 05/09, final late 06/09

@ collections.OrderedDict, importlib, lib
updates (IO, email, ipaddr, ipaddr, etree...)

@ future: 2.7: no schedule fixed yet

Resources

@ http://python.org/ & links therefrom
@ Books:
@ Python 3 for Absolute Beginners (APress)
@ haven't seen it; target date Apr 20
@ Programming in Python 3 (AW)
@ haven't reviewed it; out since Dec 26
@ Python 3 in a Nutshell (O'Reilly)

@ Anna & I started on it, "rough cut” PDF
version by Christmas (no promises!-)

@ Dive into Python3: diveintopython3.org

iy ()’r_',./

Questions & Answers
http://www.aleax.it/gs_py3k.pdf

Al

