
©2007 Google -- aleax@google.com

Python Design Patterns

Alex Martelli

http://www.aleax.it/goo_pydp.pdf

The "levels" of this talk

2

Shu

Ha

Ri

Py

DP

Contents of these talks

3

Patterns [11]
Python: hold or wrap? [3]
Creational Patterns [8]
Structural Patterns (M&A) [22]
Behavioral Patterns (Template &c) [35]

Template [9basic+16advanced -> 25]
State & Strategy [9]

Q & A

Patterns

4

The Birth of Patterns

55

...every building, every town, is made of
certain entities which I call patterns... in terms
of these pattern languages, all the different
ways ... become similar in general outline.

Patterns in general [1]
"Each pattern describes a problem which
occurs over and over in our environment,
and then describes the core of the solution
to that problem, in such a way that you can
use this solution a million times over,
without ever doing it the same way
twice" [Alexander et al, "A Pattern
Language"]

6

Patterns in general [2]
Design (and thus patterns) is not
independent from the implementation's
technology -- when building with bricks, vs
concrete, vs wood, &c, many patterns
remain (often w/small changes), but many
appear, disappear, or change deeply
"Point of view affects one's interpretation
of what is and isn't a pattern... choice of
programming language is important because
it influences one's point of view" [Gamma et
al, "Design Patterns"]

7

Design Patterns in SW

8

rich, thriving culture and community
mostly a subculture of OO development

Gamma, Helms, Johnson, Vlissides (1995)
"the gang of 4" AKA "Gof4"

PLOP conferences & proceedings thereof
DP once risked becoming a fad, or fashion

there is no silver bullet...
...but, we now know, DP are here to stay

...and, NOT independent from the choice of
programming language!-)

What are classic SW DPs
not data structures, nor algorithms
not domain-specific architectures for entire
subsystems
just: "descriptions of communicating objects
and classes that are customized to solve a
general design problem in a particular
context" [Gof4]
scope: sometimes class, mosty object
purpose: general category describing what
the pattern is about

9

DP write-up components
NAME, context, problem
forces, solution, examples
results, rationale, related DPs
KNOWN USES (KU for short)

DP are discovered, NOT invented
DP are about description (and helpful
related suggestions), NOT prescription
formal fixed schema not a must

but helpful as a checklist
somewhat audience-dependent

10

SW DP Books

11

DP myths and realities

12

many "classic" DP (for C++ or Java) are
"workarounds against static typing" (cfr:
Alpert, Brown, Woolf, "The DPs Smalltalk
Companion", Addison-Wesley DP Series)
in Python: classic DP, minus WaFST, plus
(optionally...:-) specific exploits of Python's
dynamic and introspection strengths
no silver bullet, but, quite helpful IRL

NAMES matter more than you'd think
"the guy with the hair, you know, the
Italian" vs "Alex"...

Categories of SW DP
Creational

concern the ways and means of object
instantiation

Structural
deal with the mutual composition of
classes or objects

Behavioral
analyze the ways in which classes or
objects interact and distribute
responsibilities among them

13

Prolegomena to SW DPs
"program to an interface, not to an
implementation"

usually done "informally" in Python
"favor object composition over class
inheritance"

in Python: hold, or wrap
inherit only when it's really convenient

very direct way to expose all methods
in the base class (reuse + usually
override + maybe extend)
but, it's a rather strong coupling!

14

Python: hold or wrap?

15

Python: hold or wrap?
“Hold”: object O has subobject S as an
attribute (maybe property) -- that’s all

use self.S.method or O.S.method
simple, direct, immediate, but... pretty
strong coupling, often on the wrong axis

“Wrap”: hold (often via private name) plus
delegation (so you directly use O.method)

explicit (def method(self...)...self.S.method)
automatic (delegation in __getattr__)
gets coupling right (Law of Demeter)

16

class RestrictingWrapper(object):

def __init__(self, w, block):

self._w = w

self._block = block

def __getattr__(self, n):

if n in self._block:

raise AttributeError, n

return getattr(self._w, n)

...

Inheritance cannot restrict!

Wrapping to "restrict"

17

Creational Patterns
not very common in Python...
...because "factory" is essentially built-in!-)

18

Creational Patterns [1]
"we want just one instance to exist"

use a module instead of a class
no subclassing, no special methods, ...

make just 1 instance (no enforcement)
need to commit to "when" to make it

singleton ("highlander")
subclassing not really smooth

monostate ("borg")
Guido dislikes it

19

Singleton ("Highlander")
class Singleton(object):
def __new__(cls, *a, **k):!
if not hasattr(cls, '_inst'):
cls._inst = super(Singleton, cls
).__new__(cls, *a, **k)

return cls._inst

subclassing is a problem, though:
class Foo(Singleton): pass
class Bar(Foo): pass
f = Foo(); b = Bar(); # ...???...

problem is intrinsic to Singleton

20

Monostate ("Borg")
class Borg(object):
_shared_state = {}
def __new__(cls, *a, **k):
obj = super(Borg, cls
).__new__(cls, *a, **k)

obj.__dict__ = cls._shared_state
return obj

subclassing is no problem, just:
class Foo(Borg): pass
class Bar(Foo): pass
class Baz(Foo): _shared_state = {}

data overriding to the rescue!
21

Creational Patterns [2]
"we don't want to commit to instantiating a
specific concrete class"

dependency injection
no creation except "outside"
what if multiple creations are needed?

"Factory" subcategory of DPs
may create w/ever or reuse existing
factory functions (& other callables)
factory methods (overridable)
abstract factory classes

22

Factories in Python
each type/class is intrinsically a factory

internally, may have __new__
externally, it's just a callable,
interchangeable with any other
may be injected directly (no need for
boilerplate factory functions)

modules can be kinda "abstract" factories
w/o inheritance ('os' can be 'posix' or 'nt')

23

KU: type.__call__
def __call__(cls,*a,**k):

 nu = cls.__new__(cls,*a,**k)

 if isinstance(nu, cls):

 cls.__init__(nu,*a,**k)

 return nu

(An instance of "two-phase construction")

24

factory-function example
def load(pkg, obj):

 m = __import__(pkg,{},{},[obj])

 return getattr(m, obj)

example use:

cls = load('p1.p2.p3', 'c4')

25

Structural Patterns
The "Masquerading/Adaptation" subcategory:

Adapter: tweak an interface (both class and
object variants exist)
Facade: simplify a subsystem's interface
Bridge: let many implementations of an
abstraction use many implementations of a
functionality (without repetitive coding)
Decorator: reuse+tweak w/o inheritance
Proxy: decouple from access/location

26

Adapter
client code ! requires a protocol C
supplier code " provides different protocol
S (with a superset of C's functionality)
adapter code # "sneaks in the middle":

to !, # is a supplier (produces protocol C)
to ", # is a client (consumes protocol S)
"inside", # implements C (by means of
appropriate calls to S on ")

27

© 2004 AB Strakt 11

STRAKT

DP "Adapter"

! client code ! requires a certain protocol C

! supplier code " provides different protocol
S (with a superset of C's functionality)

! adapter code # "sneaks in the middle":
• to !, # is supplier code (produces protocol C)

• to ", # is client code (consumes protocol S)

• "inside", # implements C (by means of calls to S on ")

("interface" vs "protocol": "syntax" vs "syntax
+ semantics + pragmatics")

Toy-example Adapter
C requires method foobar(foo, bar)
S supplies method barfoo(bar, foo)
e.g., " could be:
class Barfooer(object):

 def barfoo(self, bar, foo):

...

28

Object Adapter
per-instance, with wrapping delegation:
class FoobarWrapper(object):

def __init__(self, wrappee):

self.w = wrappee

def foobar(self, foo, bar):

return self.w.barfoo(bar, foo)

foobarer=FoobarWrapper(barfooer)

29

Class Adapter
per-class, w/subclasing & self-delegation:
class Foobarer(Barfooer):

def foobar(self, foo, bar):

return self.barfoo(bar, foo)

foobarer=Foobarer(...w/ever...)

30

Adapter KU
socket._fileobject: from sockets to file-like
objects (w/much code for buffering)
doctest.DocTestSuite: adapts doctest tests
to unittest.TestSuite
dbhash: adapt bsddb to dbm
StringIO: adapt str or unicode to file-like
shelve: adapt "limited dict" (str keys and
values, basic methods) to complete mapping

via pickle for any <-> string
+ UserDict.DictMixin

31

Adapter observations
some RL adapters may require much code
mixin classes are a great way to help adapt
to rich protocols (implement advanced
methods on top of fundamental ones)
Adapter occurs at all levels of complexity
in Python, it's _not_ just about classes and
their instances (by a long shot!-)

32

Facade
supplier code " provides rich, complex
functionality in protocol S
we need simple subset C of S
facade code $ implements and supplies C
(by means of appropriate calls to S on ")

3321

© 2004 AB Strakt 17

STRAKT

DP "Facade"

! existing supplier code ! provides rich,
complex functionality in protocol S

! we need a simpler "subset" C of S

! facade code " implements and supplies C
(by calling S on !)

Facade vs Adapter
Adapter's about supplying a given protocol
required by client-code

or, gain polymorphism via homogeneity
Facade is about simplifying a rich interface
when just a subset is often needed
Facade most often "fronts" for many
objects, Adapter for just one

34

Facade, before & after

35

Without Facade With Facade

http://www.tonymarston.net/php-mysql/design-patterns.html

Facade KU
asynchat.fifo facades for list
dbhash facades for bsddb

...also given as example of Adapter...!-)
old sets.Set used to facade for dict
Queue facades for deque + lock

well...:-)
os.path: basename, dirname facade for split
+ indexing; isdir &c facade for os.stat +
stat.S_ISDIR &c.

36

Facade observations
some RL facades may have substantial code

simplifying the _protocol_ is the key
interface simplifications are often
accompanied by minor functional additions

Facade occurs at all levels of complexity,
but it's most important for _complicated
subsystems_ (and reasonably-simple views)
inheritance is never useful for Facade,
because it can only "widen", never
"restrict" (so, wrapping is the norm)

37

Adapting/Facading callables
callables (functions &c) play a large role in
Python programming -- so you often may
need to adapt or facade them
functools.partial to preset some args (AKA
"currying") + bound-methods special case
decorator syntax to adapt functions or
methods by wrapping in HOFs
closures for simple HOF needs

classes w/__call__ for complex ones

38

Bridge
have N1 realizations ! of abstraction A,
each using any one of N2 implementations "
of functionality F,
without coding N1*N2 cases ...

have abstract superclass A of all ! hold a
reference R to the interface F of all ",
ensure each ! uses any functionality of F
(thus, from a ") only by delegating to R

3921

A Toy Bridge Example
class AbstractParser(object):

 def __init__(self, scanner):

 self.scanner = scanner

 def __getattr(self, name):

 return getattr(self.scanner, name)

class ExpressionParser(AbstractParser):

 def expr(self):

 ... token = self.next_token() ...

 ... self.push_back(token) ...

40

Bridge KU: SocketServer
BaseServer is the "abstraction" A
BaseRequestHandler is F (the abstract
superclass for functionality implementation)
(also uses mixins for threading, forking...)
note: A holds the very class F, and
instantiates it per-request (shades of a
Factory DP...) -- typical in Bridge DP in
Python (also e.g. email: Parser -> Message)
-> Bridge is typical of somewhat "rich",
complicated situations

41

Decorator
client code ! requires a protocol C
supplier code " does provide protocol C
but we want to insert some semantic tweak

often dynamically plug-in/plug-out-able
decorator code % "sneaks in the middle":
! uses % just as it would use "
% wraps ", and it may intercept, modify,
add (a little), delegate, ...

42

Toy Example Decorator
class WriteFullLinesOnlyFile(object):

 def __init__(self, *a, **k):

 self._f = open(*a, **k)

 self._b = ''

 def write(self, data):

 lns = (self._b+data).splitlines(True)

 if lns[-1][-1]=='\n': self._b = ''

 else: self._b = lns.pop(-1)

 self._f.writelines(lns)

 def __getattr__(self, name):

 return getattr(self._f, name)

43

KU of Decorator
gzip.GzipFile decorates a file with
compress/decompress functionality
threading.RLock decorates thread.Lock with
reentrancy & ownership functionality
codecs classes decorate a file with generic
encoding and decoding functionality

44

Proxy
client code ! needs to access an object &
however, something interferes w/that...:
& lives remotely, or in persisted form
access restrictions may apply (security)
lifetime or performance issues

proxy object ! "sneaks in the middle":
! wraps &, may create/delete it at need
may intercept, call, delegate, ...
! uses ! as it would use &

45

class RestrictingProxy(object):

def __init__(self, block, f, *a, **k):

self._makeit = f, a, k

self._block = block

def __getattr__(self, name):

if name in self._block:

raise AttributeError, name

if not hasattr(self, '_wrapped'):

 f, a, k = self._makeit

 self._wrapped = f(*a, **k)

return getattr(self._wrapped, name)

Toy Example Proxy

46

KU of Proxy
the values in a shelve.Shelf proxy for
persisted objects (get instantiated at need)
weakref.proxy proxies for any existing
object but doesn't "keep it alive"
idlelib.RemoteDebugger uses proxies (for
frames, code objects, dicts, and a debugger
object) across RPC to let a Python process
be debugged from a separate GUI process

47

Q & A on part 1

48

Q?
A!

Behavioral Patterns
Template Method: self-delegation

"the essence of OOP"...
State and Strategy as "factored out"
extensions to Template Method

49

Template Method
great pattern, lousy name

"template" very overloaded
generic programming in C++
generation of document from skeleton
...

a better name: self-delegation
directly descriptive
TM tends to imply more "organization"

50

Classic TM
abstract base class offers "organizing
method" which calls "hook methods"
in ABC, hook methods stay abstract
concrete subclasses implement the hooks
client code calls organizing method

on some reference to ABC (injecter, or...)
which of course refers to a concrete SC

51

TM skeleton
class AbstractBase(object):

def orgMethod(self):

self.doThis()

self.doThat()

class Concrete(AbstractBase):

def doThis(self): ...

def doThat(self): ...

52

TM example: paginate text
to paginate text, you must:

remember max number of lines/page
output each line, while tracking where
you are on the page
just before the first line of each page,
emit a page header
just after the last line of each page, emit
a page footer

53

AbstractPager
class AbstractPager(object):
def __init__(self, mx=60):
self.mx = mx
self.cur = self.pg = 0

def writeLine(self, line):
if self.cur == 0:
self.doHead(self.pg)

self.doWrite(line)
self.cur += 1
if self.cur >= self.mx:
self.doFoot(self.pg)
self.cur = 0
self.pg += 1

54

Concrete pager (stdout)
class PagerStdout(AbstractPager):

def doWrite(self, line):

print line

def doHead(self, pg):

print 'Page %d:\n\n' % pg+1

def doFoot(self, pg):

print '\f', # form-feed character

55

Concrete pager (curses)
class PagerCurses(AbstractPager):

 def __init__(self, w, mx=24):

 AbstractPager.__init__(self, mx)

 self.w = w

def doWrite(self, line):

self.w.addstr(self.cur, 0, line)

def doHead(self, pg):

self.w.move(0, 0)

self.w.clrtobot()

def doFoot(self, pg):

self.w.getch() # wait for keypress

56

Classic TM Rationale
the "organizing method" provides
"structural logic" (sequencing &c)
the "hook methods" perform "actual
``elementary'' actions"
it's an often-appropriate factorization of
commonality and variation

focuses on objects' (classes')
responsibilities and collaborations: base
class calls hooks, subclass supplies them
applies the "Hollywood Principle": "don't
call us, we'll call you"

57

A choice for hooks
class TheBase(object):

 def doThis(self):

 # provide a default (often a no-op)

 pass

 def doThat(self):

 # or, force subclass to implement

 # (might also just be missing...)

 raise NotImplementedError

Default implementations often handier, when
sensible; but "mandatory" may be good docs.

58

Overriding Data
class AbstractPager(object):

 mx = 60

...

class CursesPager(AbstractPager):

 mx = 24

...

access simply as self.mx -- obviates any need
for boilerplate accessors self.getMx()...

59

class Queue:
...
def put(self, item):

self.not_full.acquire()

try:

while self._full():

self.not_full.wait()

self._put(item)

self.not_empty.notify()

finally:

self.not_full.release()

def _put(self, item): ...

KU: Queue.Queue

60

Queue’s TMDP
Not abstract, often used as-is

thus, implements all hook-methods
subclass can customize queueing discipline

with no worry about locking, timing, ...
default discipline is simple, useful FIFO
can override hook methods (_init, _qsize,
_empty, _full, _put, _get) AND...
...data (maxsize, queue), a Python special

61

class LifoQueueA(Queue):

def _put(self, item):

self.queue.appendleft(item)

class LifoQueueB(Queue):

def _init(self, maxsize):

self.maxsize = maxsize

self.queue = list()

def _get(self):

return self.queue.pop()

Customizing Queue

62

KU: cmd.Cmd.cmdloop
def cmdloop(self):

 self.preloop()

 while True:

 s = self.doinput()

 s = self.precmd(s)

 f = self.docmd(s)

 f = self.postcmd(f,s)

 if f: break

 self.postloop()

63

KU: asyncore.dispatcher
several organizing-methods, e.g:

def handle_write_event(self):

 if not self.connected:

 self.handle_connext()

 self.connected = 1

 self.handle_write()

64

"Class TM": DictMixin
Abstract, meant to multiply-inherit from

does not implement hook-methods
subclass must supply needed hook-methods

at least __getitem__, keys
if R/W, also __setitem__, __delitem__
normally __init__, copy
may override more (for performance)

65

class DictMixin:
...

def has_key(self, key):

 try:

 # implies hook-call (__getitem__)

 value = self[key]

 except KeyError:

 return False

 return True

def __contains__(self, key):
 return self.has_key(key)
...

TM in DictMixin

66

class Chainmap(UserDict.DictMixin):

def __init__(self, mappings):

self._maps = mappings

def __getitem__(self, key):

for m in self._maps:

try: return m[key]

except KeyError: pass

raise KeyError, key

def keys(self):

keys = set()
for m in self._maps: keys.update(m)

return list(keys)

Exploiting DictMixin

67

"Factoring out" the hooks
"organizing method" in one class
"hook methods" in another
KU: HTML formatter vs writer
KU: SAX parser vs handler
adds one axis of variability/flexibility
shades towards the Strategy DP:

Strategy: 1 abstract class per decision
point, independent concrete classes
Factored TM: abstract/concrete classes
more "grouped"

68

TM + introspection
"organizing" class can snoop into "hook"
class (maybe descendant) at runtime

find out what hook methods exist
dispatch appropriately (including "catch-
all" and/or other error-handling)

69

KU: cmd.Cmd.docmd
def docmd(self, cmd, a):

 ...

 try:

 fn = getattr(self, 'do_' + cmd)

 except AttributeError:

 return self.dodefault(cmd, a)

 return fn(a)

70

Interleaved TMs KU
plain + factored + introspective

multiple "axes", to separate carefully
distinct variabilities

a DP equivalent of a "Fuga a Tre Soggetti"
"all art aspires to the condition of
music" (Pater, Pound, Santayana...?-)

71

KU: unittest.TestCase
def__call__(self, result=None):

 method = getattr(self, ...)

 try: self.setUp()

 except: result.addError(...)

 try: method()

 except self.failException, e:...

 try: self.tearDown()

 except: result.addError(...)

 ...result.addSuccess(...)...

72

State and Strategy DPs
Not unlike a “Factored-out” TMDP

OM in one class, hooks in others
OM calls self.somedelegate.dosomehook()

classic vision:
Strategy: 1 abstract class per decision,
factors out object behavior
State: fully encapsulated, strongly
coupled to Context, self-modifying

Python: can switch __class__, methods

73

Strategy DP
class Calculator(object):

def __init__(self):

self.strat = Show()

def compute(self, expr):

res = eval(expr)

self.strat.show('%r=%r'% (expr, res))

def setVerbosity(self, quiet=False):

if quiet: self.strat = Quiet()

else: self.strat = Show()

74

Strategy classes
class Show(object):

def show(self, s):

 print s

class Quiet(Show):

def show(self, s):

 pass

75

State DP: base class
class Calculator(object):

def __init__(self):

 self.state = Show()

def compute(self, expr):

res = eval(expr)

self.state.show('%r=%r'% (expr, res))

def setVerbosity(self, quiet=False):

self.state.setVerbosity(self, quiet)

76

State classes
class Show(object):

def show(self, s):

 print s

def setVerbosity(self, obj, quiet):

if quiet: obj.state = Quiet()

else: obj.state = Show()

class Quiet(Show):

def show(self, s):

 pass

77

Ring Buffer
FIFO queue with finite memory: stores the
last MAX (or fewer) items entered

good, e.g., for logging tasks
intrinsically has two macro-states:

early (<=MAX items entered yet), just
append new ones
later (>MAX items), each new item added
must overwrite the oldest one remaining
(to keep latest MAX items)

switch from former macro-state (behavior)
to latter is massive, irreversible

78

Switching __class__ (1)
class RingBuffer(object):

def __init__(self):

 self.d = list()

def tolist(self):

 return list(self.d)

def append(self, item):

self.d.append(item)

if len(self.d) == MAX:

self.c = 0

self.__class__ = _FullBuffer

79

Switching __class__ (2)
class _FullBuffer(object):

def append(self, item):

self.d[self.c] = item

self.c = (1+self.c) % MAX

def tolist(self):

return (self.d[self.c:] +

 self.d[:self.c])

80

Switching a method
class RingBuffer(object):
def __init__(self):
 self.d = list()
def append(self, item):
self.d.append(item)
if len(self.d) == MAX:
self.c = 0
self.append = self.append_full

def append_full(self, item):
self.d.append(item)
self.d.pop(0)

def tolist(self):
 return list(self.d)

81

Q & A on part 2

82

Q?
A!

