Python Design Patterns

Alex Martelli

http://www.aleax.it/goo_pydp.pdf

C00g]e

The "levels’ of this talk

Contents of these talks

@ Patterns [11]

@ Python: hold or wrap? [3]

@ Creational Patterns [8]

® Structural Patterns (M&A) [22]

@ Behavioral Patterns (Template &c) [35]

@ Template [9basic+16advanced -> 25]
@ State & Strategy [9]
o Q &A

V)
-
—
Q
o
e
O
Q

The irfh of Pa’rerns

The
Timeless Way of

Building

Christopher Alexander

...every building, every fown, is made of
certain entities which I call patterns... in terms
of these pattern languages, all the different
ways ... become similar in general outline.

Patterns in general [1]

@ "Each pattern describes a problem which
occurs over and over in our environment,
and then describes the core of the solution
to that problem, in such a way that you can
use this solution a million tfimes over,

without ever doing it the same way
twice" [Alexander et al, "A Pattern
Language’]

Patterns in general [2]

@ Design (and thus patterns) is not
independent from the implementation's
technology -- when building with bricks, vs
concrete, vs wood, &c, many patterns
remain (often w/small changes), but many

appear, disappear, or change deeply
@ "Point of view affects one's interpretation
of what is and isn't a pattern... choice of

programming language is important because
it influences one's point of view" [Gamma et

al, "Design Patterns"]

C-00al
(

7

Design Patterns in SW

@ rich, thriving culture and community
@ mostly a subculture of OO development
® Gamma, Helms, Johnson, Vlissides (1995)
@ "the gang of 4" AKA "Gof4"
@ PLOP conferences & proceedings thereof
@ DP once risked becoming a fad, or fashion
@ there Is no silver bullet...
@ ...but, we now know, DP are here to stay

@ ...and, NOT independent from the choice of
programming language!-)

Co00gl
I's

8

What are classic SW DPs

@ not data structures, nor algorithms

@ not domain-specific architectures for entire
subsystems

@ just: "descriptions of communicating objects
and classes that are customized to solve a
general design problem in a particular
context" [Gof4]

@ scope: sometimes class, mosty object

@ purpose: general category describing what
the pattern is about

C-00al
(

DP write-up components

@ NAME, context, problem
@ forces, solution, examples
@ results, rationale, related DPs
@ KNOWN USES (KU for short)
® DP are discovered, NOT invented

@ DP are about description (and helpful
related suggestions), NOT prescription

@ formal fixed schema not a must
@ but helpful as a checklist
@ somewhat audience-dependent

10

SW DP Books

Head First Dating Design
Design Patterns Patterns

Elements of Reasable

Obpective-Onented Paired Programasing

Ercha Gl 4 PATTERN HATCHING
Rickie Hanson 5 .

Rnonda Jackson g e Patterns Asolid
Jonna Disvieses 3 b

DESIGN PATTERNS
EXPLAINED

4 WA ssocanl RSalr o YO
i A e
" , J
SN

aiah smicromay DESIGN PATTERNS

JAMES R, TROTTY SMALLTALK COMPANION

>

Design Patterns

Elements of Reusable
Object-Oriented Software

R EFACTORING
TO PATTERNS

BEFTWANE PATYEENS RENIESN

Erich Gamma
Richard Helm
Ralph lohnson
John Vlissides

S35 ONLINIIWNOD TYNOISSTIONd 237153 NOSIAAY

SEFEWARE PATYERNS SEMIEN ‘

Robwert O, Martin
S e s e | e

11

DP myths and realities

@ many "classic’ DP (for C++ or Java) are
"workarounds against static typing" (cfr:
Alpert, Brown, Woolf, “"The DPs Smalltalk
Companion”, Addison-Wesley DP Series)

@ in Python: classic DP, minus WaFST, plus
(optionally...:-) specific exploits of Python's
dynamic and introspection strengths

@ no silver bullet, but, quite helpful IRL

@ NAMES matter more than you'd think

@ "the guy with the hair, you know, the
Italian” vs "Alex...

C-00al
(

Categories of SW DP

® Creational

@ concern the ways and means of object
instantiation

@ Structural
@ deal with the mutual composition of

classes or objects
@ Behavioral

@ analyze the ways in which classes or
objects interact and distribute
responsibilities among them

Prolegomena to SW DPs

@ "program fo an interface, not to an
implementation”

@ usually done “informally” in Python

@ "favor object composition over class
inheritance”

@ in Python: hold, or wrap
@ inherit only when it's really convenient

@ very direct way to expose all methods
in the base class (reuse + usually
override + maybe extend)

@ but, it's a rather strong coupling!

C-00al
(

14

Python: hold or wrap?

> A
..‘.‘)

"@

N EmmEta

;ﬂ A

%
A
W

i E‘!;

{

N
' Al "

\

4

—

s 7
N~
~_
—_—

Python: hold or wrap?
@ "Hold”: object O has subobject S as an
attribute (maybe property) -- that’s all
@ use self.S.method or O.S.method

@ simple, direct, immediate, but... pretty
strong coupling, often on the wrong axis

@ "Wrap”: hold (often via private name) plus
delegation (so you directly use O.method)

@ explicit (def method(self...)...self.S.method)
@ automatic (delegation in __getattr__)

@ gets coupling right (Law of Demeter)
(= ,()fﬂr

16

Wrapping to "restrict”

class RestrictingWrapper(object):
def __init__(self, w, block):
self. . w=w
self._block = block
def __getattr__(self, n):

1f n 1n self._block:
raise AttributeError, n
return getattr(self._w, n)

Inheritance cannot restrict!

17

Creational Patterns

@ not very common in Python...
@ ...because "factory" is essentially built-in!-)

4 e i1

Creational Patterns [1]

@ 'we want just one instance to exist"
@ use a module instead of a class
@ no subclassing, no special methods, ...
@ make just 1 instance (no enforcement)
@ need to commit to "when" to make it

@ singleton ("highlander")

@ subclassing not really smooth
@ monostate ("borg")

@ Guido dislikes it

Singleton ("Highlander")

class Singleton(object):
def . new.: (cls, Fa caFK):
1f not hasattr(cls, '_inst'):
cls._inst = super(Singleton, cls
Y. newnCcls, ‘*a, **k)
return cls._1inst

subclassing is a problem, though:
class Foo(Singleton): pass

class Bar(Foo): pass
f = Foo(); b = Bar(); # 777
problem is intrinsic to Singleton

20

Monostate ("Borg”)

class Borg(object):
_Shared_state = {}
def . newx_(cls, *a, **k):
obj = super(Borg, cls
Dozinew s gEls, *a,o **k)
obj.__dict__ = cls._shared_state
return obj

subclassing is no problem, just:
lass Foo(Borg): pass

lass Bar(Foo): pass
lass Baz(Foo): _shared_state

data overriding fo the rescue!

21

Creational Patterns [2]

@ "we don't want to commit to instantiating a
specific concrete class”

@ dependency injection
@ no creation except “outside”
@ what if multiple creations are needed?

@ "Factory” subcategory of DPs
@ may create w/ever or reuse existing
@ factory functions (& other callables)
@ factory methods (overridable)
@ abstract factory classes

22

Factories in Python

@ each type/class is intrinsically a factory
@ internally, may have __new___

@ externally, it's just a callable,
interchangeable with any other

2 ma?' be injected directly (no need for
e

boilerplate factory functions)

® modules can be kinda "abstract' factories
w/o inheritance (‘os' can be 'posix' or 'nt')

KU: type.__call___

def __call —(Celise.*a, iGn
hu = cls... new. (clssaer=ia)
1f 1sinstance(nu, cls):
clsii 4En1 T R Tas ti k)
return nu

(An instance of "two-phase construction™)

factory-function example

def load(pkg, obj):

= __import__(pkg,1},1},[0ob]])
return getattr(m, obj)

example use:
cls = load('pl.p2.p3', 'c4')

Structural Patterns

The "Masquerading/Adaptation” subcategory:

@ Adapter: tweak an interface (both class and
object variants exist)

@ Facade: simplify a subsystem's interface

@ Bridge: let many implementations of an
abstraction use many implementations of a

functionality (without repetitive coding)
@ Decorator: reuse+tweak w/o inheritance
@ Proxy: decouple from access/location

Adapter

@ client code Y requires a protocol C

@ supplier code O provides different protocol
S (with a superset of C's functionality)

@ adapter code & "sneaks in the middle":

@ to Yy, & is a supplier (produces protocol C)

@ to 0, & is a client (consumes protocol S)

@ "inside”, o implements C (by means of
appropriate calls to S on O)

Toy-example Adapter

@ C requires method foobar(foo, bar)
@ S supplies method barfoo(bar, foo)
@ e.g., O could be:

class Barfooer(object):

def barfoo(self, bar, foo):

Object Adapter

@ per-instance, with wrapping delegation:
class FoobarWrapper(object):

def __1init__(self, wrappee):
self.w = wrappee

def foobar(self, foo, bar):
return self.w.barfoo(bar, foo)

foobarer=FoobarWrapper(barfooer)

C-00al
(

Class Adapter

@ per-class, w/subclasing & self-delegation:
class Foobarer(Barfooer):

def foobar(self, foo, bar):
return self.barfoo(bar, foo)

foobarer=Foobarer(...w/ever...)

Adapter KU

@ socket.__fileobject: from sockets to file-like
objects (w/much code for buffering)

@ doctest.DocTestSuite: adapts doctest tests
to unittest.TestSuite

@ dbhash: adapt bsddb to dbm

@ StringlO: adapt str or unicode to file-like

@ shelve: adapt "limited dict" (str keys and
values, basic methods) to complete mapping

@ via pickle for any <-> string
@ + UserDict.DictMixin

Adapter observations

@ some RL adapters may require much code

@ mixin classes are a great way to help adapt
to rich protocols (implement advanced
methods on top of fundamental ones)

@ Adapter occurs at all levels of complexity

@ in Python, it's _not_ just about classes and
their instances (by a long shot!-)

Facade

@ supplier code O provides rich, complex
functionality in protocol S

@ we need simple subset C of S

@ facade code @ implements and supplies C

(by means of appropriate calls to S on O)

*fg\‘h’

L 2a '«z?\ e
frﬁ RN fﬂﬂﬂﬂl) ﬂﬂﬂﬂm\n

.

Facade vs Adapter

@ Adapter's about supplying a given protocol
required by client-code

@ or, gain polymorphism via homogeneity

@ Facade is about simplifying a rich interface
when just a subset is often needed

o Facade most often “fronts” for many
objects, Adapter for just one

Facade, before & after

Client classes

Without Facade With Facade

http://www.tonymarston.net/php-mysql/design-patterns.html

/ 7/)O/:’I(
(

Facade KU

@ asynchat.fifo facades for list
@ dbhash facades for bsddb
@ ...also given as example of Adapter...!-)
@ old sets.Set used to facade for dict
@ Queue facades for deque + lock

o well...:-)

@ os.path: basename, dirname facade for split
+ indexing; isdir &c facade for os.stat +
stat.S_ISDIR &c.

Facade observations

@ some RL facades may have substantial code
@ simplifying the _protocol_ is the key

@ interface simplifications are often
accompanied by minor functional additions

@ Facade occurs at all levels of complexity,
but it's most important for _complicated
subsystems__ (and reasonably-simple views)

@ inheritance is never useful for Facade,
because it can only "widen", never
"restrict” (so, wrapping is the norm)

Co00gl
I's

Adapting/Facading callables

@ callables (functions &c) play a large role in
Python programming -- so Yyou offen may
need to adapt or facade them

@ functools.partial to preset some args (AKA
"currying”) + bound-methods special case

@ decorator syntax to adapt functions or

methods by wrapping in HOFs
@ closures for simple HOF needs
@ classes w/___call___ for complex ones

Bridge

@ have NI realizations p of abstraction A,

@ each using any one of N2 implementations t
of functionality F,

@ without coding N1*N2 cases ...

>

@ have abstract superclass A of all p hold a
reference R to the interface F of all i,

@ ensure each p uses any functionality of F
(thus, from a 1) only by delegating to R

A Toy Bridge Example

class AbstractParser(object):
def __1init__(self, scanner):
self.scanner = scanner
def __getattr(self, name):
return getattr(self.scanner, name)

class ExpressionParser(AbstractParser):
def expr(self):
. token = self.next_token() ...
. self.push_back(token) ...

Bridge KU: SocketServer

® BaseServer is the "abstraction” A

@ BaseRequestHandler is F (the abstract
superclass for functionality implementation)

@ (also uses mixins for threading, forking...)

@ note: A holds the very class F, and
instantiates it per-request (shades of a
Factory DP...) —-- typical in Bridge DP in
Python (also e.g. email: Parser -> Message)

@ -> Bridge is typical of somewhat “rich”,
complicated situations

Co00gl
I's

Decorator

@ client code Y requires a protocol C

@ supplier code O does provide protocol C

@ but we want to insert some semantic tweak
@ often dynamically plug-in/plug-out-able

@ decorator code 0 "sneaks in the middle":
@ Y uses O just as it would use O

@ 0 wraps O, and it may intercept, modify,
add (a little), delegate, ...

Toy Example Decorator

class WriteFullLinesOnlyFile(Cobject):

def __1nit. (selfiy *a = SEiEis
self._f = open(*a, **k)
selfiib ="

def write(self, data):
lns = (self._b+data).splitlines(True)
1f Llns|-1}=Bl=="\n": self.:b ="'
else: self._b = lns.pop(-1)
self._f.writelines(lns)

def __getattr__(self, name):
return getattr(self._f, name)

(X ,()rjir

43

KU of Decorator

® gzip.GzipFile decorates a file with
compress/decompress functionality

@ threading.RLock decorates thread.Lock with
reentrancy & ownership functionality

@ codecs classes decorate a file with generic

encoding and decoding functionality

Proxy

@ client code Y needs to access an object T
@ however, something interferes w/that...:
@ T lives remotely, or in persisted form
@ access restrictions may apply (security)
@ lifetime or performance issues

@ proxy object 1 "sneaks in the middle":
@ 1 wraps T, may create/delete it at need
@ may intercept, call, delegate, ...
@Y uses 1 as it would use T

Toy Example Proxy

class RestrictingProxy(object):
def __1init._(self, block. St st sic):
self._makeit = f, a, k
self._block = block
def __getattr__(self, name):

1f name 1n self._block:
raise AttributeError, name

1f not hasattr(self, '_wrapped'):
f, a, k = self._makeit
self._wrapped = f(*a, **k)

return getattr(self._wrapped, name)

(X ,()rjir

46

KU of Proxy

@ the values in a shelve.Shelf proxy for
persisted objects (get instantiated at need)

@ weakref.proxy proxies for any existing
object but doesn't "keep it alive”

@ idlelib.RemoteDebugger uses proxies (for

frames, code objects, dicts, and a debugger
object) across RPC to let a Python process
be debugged from a separate GUI process

Q & A on part 1

Behavioral Patterns

@ Template Method: self-delegation
@ "the essence of OOP"...

@ State and Strategy as "factored out"
extensions to Template Method

This certifies that

{name)

ts hereby recognised for demonstration of
Good Behavior

at (school)

atvarded (date)

Template Method

@ great pattern, lousy name
@ "template” very overloaded
@ generic programming in C++
@ generation of document from skeleton
o ..

@ a better name: self-delegation
@ directly descriptive
@ TM fends to imply more “organization”

C-00al
(

Classic TM

@ abstract base class offers “organizing
method” which calls "hook methods"

@ in ABC, hook methods stay abstract
@ concrete subclasses implement the hooks
@ client code calls organizing method

@ on some reference to ABC (injecter, or...)
@ which of course refers to a concrete SC

TM skeleton

class AbstractBase(object):
def orgMethod(self):
self.doThis()
self.doThat()

class Concrete(AbstractBase):
def doThis(self):
def doThat(self):

TM example: paginate text

@ to paginate text, you must:
@ remember max number of lines/page

@ output each line, while tracking where
you are on the page

@ just before the first line of each page,

emit a page header

@ just after the last line of each page, emit
a page footer

AbstractPager

class AbstractPager(object):
def __init__(self, mx=60):
self.mx = mx
self.cur = self.pg = 0
def writelLine(self, line):

1f self.cur ==

self. doHead(self Pg)
self.doWrite(line)
self.cur += 1
1f self.cur >= self.mx:
self.doFoot(self.pg)
self.cur = 0
self.pg += 1

54

Concrete pager (stdout)

class PagerStdout(AbstractPager):
def doWrite(self, line):
print line
def doHead(self, pg):
print 'Page %d:\n\n' % pg+1

def doFoot(self, pg):
primt " \f.i # form-feed character

Concrete pager (curses)

class PagerCurses(AbstractPager):
def __init__(self, w, mx=24):
AbstractPager.__init__(self, mx)
self.w = w
def doWrite(self, line):

self.w.addstr(self.cur, 0, line)
def doHead(self, pg):
self.w.move(@, 0)
self.w.clrtobot()
def doFoot(self, pg):
self.w.getch() # wait for keypress

(X ,()rjir

Classic TM Rationale

o ’rhe ‘organizing me’rhod provides
"structural logic” (sequencing &c)

@ the "hook methods” perform “actual
“elementary’ actions”

@ it's an often-appropriate factorization of
commonality and variation

@ focuses on objects' (classes')
responsibilities and collaborations: base
class calls hooks, subclass supplies them

o applies the "Hollywood Principle™: “don't
call us, we'll call you"

C-00al
(

57

A choice for hooks

class TheBase(object):

def doThis(self):
provide a default (often a no-op)
PAsSS

def doThat(self):
or, force subclass to 1mplement
(might also just be missing...)
raise NotImplementedError

Default implementations often handier, when
sensible; but "mandatory” may be good docs.

(X ,()rjir

58

Overriding Data

class AbstractPager(object):
mx = 00

class CursesPager(AbstractPager):

mx = 24

access simply as self.mx -- obviates any need
for boilerplate accessors self.getMx()...

(X ,()rjir

KU: Queue.Queue

class Queue:

def put(self, 1tem):
self.not_full.acquire()

try:
wh

se
se
fina
se

1le self._full():
self.not_full.wait()

Lf._put(item)
Lf.not_empty.notify()

lly:

Lf.not_full.release()

def _put(self, 1tem):

60

Queues TMDP

@ Not abstract, often used as-is
@ thus, implements all hook-methods

@ subclass can customize queueing discipline
@ with no worry about locking, fiming, ...
@ default discipline is simple, useful FIFO

@ can override hook methods (_init, _gsize,
_empty, _full, _put, _get) AND...

@ ...data (maxsize, queue), a Python special

Customizing Queue

class LifoQueueA(Queue):
def _put(self, 1tem):
self.queue.appendleft(item)

class LifoQueueB(Queue):

def _init(self, maxsize):
self.maxsi1ze = maxsize
self.queue = list()

def _get(self):
return self.queue.pop()

KU: cmd.Cmd.cmdloop

def cmdloop(self):
self.preloop()
while True:

= self.doinput()

= self.precmd(s)
= self.docmd(s)
= self.postcmd(f,s)
1f f: break
self.postloop()

63

KU: asyncore.dispatcher

several organizing-methods, e.g:
def handle_write_event(self):
1f not self.connected:
self.handle_connext()

self.connected = 1
self.handle_write()

"Class TM": DictMixin

@ Abstract, meant to multiply-inherit from
@ does not implement hook-methods

@ subclass must supply needed hook-methods
@ at least _getitem___, keys
o if R/W, also __setitem___, __delitem__

@ normally __init_, copy
@ may override more (for performance)

TM In DictMixin

class DictMixin:

def has_key(self, key):
try:
1mplies hook-call (__getitem__)

value = self[key]
except KeyError:

return False
return True

def __contains__(self, key):
return self.has_key(key)

66

Exploiting DictMixin

class Chainmap(UserDict.DictMixin):
def __init__(self, mappings):
self._maps = mappings
def __getitem__(self, key):
for m 1n self._maps:

try: return m[key]
except KeyError: pass
raise KeyError, key
def keys(self):
keys = set()
for m 1n self._maps: keys.update(m)
return list(keys) 00T

"Factoring out” the hooks

@ "organizing method” in one class

@ "hook methods” in another

@ KU: HTML formatter vs writer

@ KU: SAX parser vs handler

@ adds one axis of variability/flexibility
@ shades towards the Strategy DP:

@ Strategy: 1 abstract class per decision
point, independent concrete classes

@ Factored TM: abstract/concrete classes
more "grouped”

C-00al
(

TM + introspection

@ "organizing” class can snoop into "hook"
class (maybe descendant) at runtime

@ find out what hook methods exist

@ dispatch appropriately (including "catch-
all" and/or other error-handling)

KU: emd.Cmd.docmd

def docmd(self, cmd, a):
try:
fn = getattr(self, 'do_' + cmd)
except AttributeError:

return self.dodefault(cmd, a)
return fnCa)

Interleaved TMs KU

@ plain + factored +

@ multiple "axes”, to separate carefully
distinct variabilities

@ a DP equivalent of a "Fuga a Tre Soggetti”
@ "all art aspires to the condition of

music" (Pater, Pound, Santayana...?-)

KU: unittest.TestCase

def__call__(self, result=None):
method = (selfg v’
try: self.setUp()
except: result.addError(...)
try: O
except self.failException, e:...
try: self.tearDown()
except: result.addError(C...)
.. .result.addSugeess€. . o). .

(.00l
(

72

State and Strategy DPs

@ Not unlike a “Factored-out” TMDP

@ OM in one class, hooks in others

@ OM calls self.somedelegate.dosomehook()
@ classic vision:

@ Strategy: 1 abstract class per decision,
factors out object behavior

@ State: fully encapsulated, strongly
coupled to Context, self-modifying

@ Python: can switch ___class___, methods

(5009l
(¢

Strategy DP

class Calculator(object):
def __init__(self):
self.strat = Show()
def compute(self, expr):
res = eval(expr)

self.strat.show('%r=%r'% (expr, res))
def setVerbosity(self, quiet=False):

1f quiet: self.strat = Quiet()

else: self.strat = Show()

Strategy classes

class Show(object):
def show(self, s):
print s

class Quiet(Show):

def show(self, s):
DASS

State DP: base class

class Calculator(object):
def: . 1niks (Cseli
self.state = Show()
def compute(self, expr):
res = eval(expr)

self.state.show('%r=%r'% (expr, res))
def setVerbosity(self, quiet=False):
self.state.setVerbosity(self, quiet)

State classes

class Show(object):
def show(self, s):
print s
def setVerbosity(self, obj, quiet):
1f quiet: obj.state = Quiet()

else: obj.state = Show()

class Quiet(Show):
def show(self, s):
pAss

Ring Buffer

@ FIFO queue with finite memory: stores the
last MAX (or fewer) items entered

@ good, e.g., for logging tasks
@ intrinsically has two macro-states:

@ early (<=MAX items entered yet), just
append new ones

@ later (>MAX items), each new item added

must overwrite the oldest one remaining
(to keep latest MAX items)

@ switch from former macro-state (behavior)
to latter is massive, irreversible

C-00al
(

Switching ___class___ (1)

class RingBuffer(object):
def __init__(self):
self.d = li1st()
def tolist(self):
return list(self.d)
def append(self, 1tem):
self.d.append(item)
1f len(self.d) == MAX:
self.c = 0
self, ‘class: = —=¢SRULLBUFEEr

(50041

Switching __class___ (2)

class _FullBuffer(object):
def append(self, i1tem):
self.d[self.c] = 1tem
self.c = (1+self.c) % MAX
def tolist(self):

return (self.d[self.c:] +
self.d[:self.c])

Switching a method

class RingBuffer(object):
def __init__(self):
self.d = st
def append(self, i1tem):
self.d.append(item)
1f len(self.d) == MAX:

self.c = 0
self.append = self.append_full
def append_full(self, 1tem):
self.d.append(item)
self.d.pop(0)
def tolist(self):
return list(self.d)

Q & A on part 2

