
©2007 Google -- aleax@google.com

Python For Programmers

http://www.aleax.it/goo_py4prog.pdf

http://www.aleax.it/py4prog.pdf
http://www.aleax.it/py4prog.pdf

This talk's audience
mildly to very experienced programmers in
1 (or, better, more) of Java, C++, C, Perl, ...
no previous exposure to Python needed

a little bit can't hurt
but, if you already know Python well, you
will probably end up rather bored!-)

ready for some very fast & technical parts
as well as some more relaxed ones:-)

tolerant of short names and too-compact
formatting (to squeeze in more code/slide!)

2

What's Python [1]?
a "very high-level language", with:

clean, spare syntax
simple, regular, powerful semantics
object-oriented, multi-paradigm
focus on productivity via modularity,
uniformity, simplicity, pragmatism

a rich standard library of modules
lots of 3rd-party tools/add-ons
several good implementations

CPython 2.5, pypy 1.0, IronPython 1.1
[.NET], (Jython 2.2 [JVM])

3

What's Python [2]?
a strong open-source community

many users (both individuals and
companies) in all fields
the Python Software Foundation
sub-communities for special interests
many local interest groups
sites, newsgroups, mailing lists, ...

courses, workshops, tutorials, ...
... and an inexhaustible array of BOOKS!

online-only, paper-only, or both

4

Lots & LOTS of good books

5

Similarities to Java

6

typically compiled to bytecode
but: compilation is implicit ("auto-make")

everything inherits from "object"
but: also numbers, functions, classes, ...
"everything is first-class"

uniform object-reference semantics
assignment, argument passing, return

vast, powerful standard library
garbage collection
introspection, serialization, threads, ...

Similarities to C++

7

multi-paradigm
OOP, procedural, generic, a little FP

multiple inheritance (structural/mixin)
operator overloading

but: not for "plain assignment"
signature-based polymorphism

as if "everything was a template":-)
lots of choices for all the "side issues"

GUI, Web & other network work, DB, IPC
and distributed computing, ...

Similarities to C

8

"Spirit of C" @87% (more than Java/C++...),
as per ISO C Standard's "Rationale":
1. trust the programmer
2. don't prevent the programmer from doing
what needs to be done
3. keep the language small and simple
4. provide only one way to do an operation
5. (make it fast, even if it's not guaranteed to
be portable)

(this is the one bit not @ 100% in Python:-)

Python vs Java/C++/C
typing: strong, but dynamic

names have no type: objects have types
no "declarations" -- just statements
spare syntax, minimal ornamentation:

no { } for blocks, just indentation
no () for if/while conditions
generally less punctuation

"everything" is a first-class object
classes, functions, methods, modules, ...

the focus is on high and very high levels

9

Python fundamentals
interactive interpreter (prompts: main one is
>>> , ... means "statement continuation")

to try things out, see expressions' values
source files such as foo.py

auto-compiled to foo.pyc on import
plain assignment:
<name> = <expression>

binds or rebinds name to expressions' value
names are not "declared"
names don't have "a type" (objects do)

None: placeholder value for "nothing here"

10

Elementary I/O
two built-in functions for elementary input:
input(prompt): user may enter any
Python expression -- returns its value
raw_input(prompt): returns string

trims trailing \n
one statement for elementary output:
print <0+ comma-separated expressions>
separates results with a space
\n at end (unless trailing comma)
print itself does no fancy formatting

11

Some trivial examples
x = 23 # name x now means 23
print x # emits 23
x = 'foo' # but now it means 'foo' instead
print x # emits foo
del x # name x becomes undefined
print x # is an error ("exception")

y = None # name y is defined... to None
print y # emits None

12

Flow Control
if <expr>: <indented block>

then, 0+ elif <expr>: <indented block>
then, optionally: else: <indented block>

while <expr>: <indented block>
within the block, may have
break
continue

then, optionally: else: <indented block>
for <name> in <iterable>:
break, continue, else:, just like while

13

Flow-control examples
a = 23
b = 45
if a > b:
 print a, 'is greater than', b
elif a == b:
 print a, 'is equal to', b
else:
 print a, 'is smaller than', b
while a < b:
 print a, b
 a = a * 2

14

Built-in "simple" types
numbers: int, long, float, complex

23 943721743892819 0x17 2.3 4.5+6.7j
operators: + - * ** / // % ~ & | ^ << >>
built-ins: abs min max pow round sum

strings: plain and Unicode
'single' "double" r'raw' u"nicode" \n &c
operators: + (cat), * (rep), % (format)

rich "format language" (like printf)
built-ins: chr ord unichr
are R/O sequences: len, index/slice, loop
methods galore: capitalize, center, ...

15

Built-in "container" types
tuple: immutable sequence
() (23,) (23, 45) tuple('ciao')

list: mutable sequence (in fact a "vector")
[] [23] [23, 45] list('ciao')

set and frozenzet: simple hashtables
set() set((23,)) set('ciao')

dict: key->value mapping by hashtable
{} {2:3} {4:5, 6:7} dict(ci='ao')

containers support: len(c), looping (for x
in c), membership testing (if x in c)
most have methods (set also has operators)

16

Sequences
strings, tuples and lists are sequences
(other sequence types are in the library)
repetition (c*N), catenation (c1+c2)
indexing: c[i], slicing: c[i:j] and c[i:j:k]:
'ciao'[2]=='a', 'ciao'[3:1:-1]=='oa'

always: first bound included, last
bound excluded (per Koenig's advice:-)

lists are _mutable_ sequences, so you can
assign to an indexing and/or slice

assignment to slice can change length
dicts and sets are not sequences

17

Comparisons, tests, truth
equality, identity: == != is is not
order: < > <= >=
containment: in not in
"chaining": 3 <= x < 9
false: numbers == 0, "", None, empty
containers, False (aka bool(0))
true: everything else, True (aka bool(1))
not x == not bool(x) for any x
and, or "short-circuit" (-> return operand)
so do built-ins any, all (-> return a bool)

18

Exceptions

19

Errors (and "anomalies" which aren't errors)
"raise exceptions" (instances of Exception or
any subtype of Exception)
Statement raise explicitly raises exception
Exceptions propagate "along the stack of
function calls", terminating functions along
the way, until they're caught
Uncaught exceptions terminate the program
Statement try/except may catch exceptions
(also: try/finally, and its nicer form with
for "resource allocation is initialization")

iterators and for loops

20

for i in c: <body>
 ===>
_t = iter(c)
while True:
 try: i = _t.next()
 except StopIteration: break
 <body>

also: (<expr> for i in c <opt.clauses>)
 [<expr> for i in c <opt.clauses>]
("genexp" and "list comprehension" forms)

functions

21

def <name>(<parameters>): <body>
<body> compiled, not yet evaluated
<parameters>: 0+ local variables, initialized
at call time by the <args> passed by caller
default values may be given (to 0+ trailing
parameters) with <name>=<expr> (expr is
evaluated only once, when def executes)
<parameters> may optionally end with
*<name> (tuple of arbitrary extra positional
arguments) and/or **<name> (dict of
arbitrary extra named arguments)

function eg: sum squares
def sumsq(a, b): return a*a+b*b
print sumsq(23, 45)

Or, more general:
def sumsq(*a): return sum(x*x for x in a)

Lower-level of abstraction, but also OK:
def sumsq(*a):
 total = 0
 for x in a: total += x*x
 return total

22

Generators
functions that use yield instead of return
each call builds and returns an iterator
(object w/method next, suitable in
particular for looping on in a for)
end of function raises StopIteration

def enumerate(seq): # actually built-in
 n = 0
 for item in seq:
 yield n, item
 n += 1

23

An unending generator
def fibonacci():
 i = j = 1
 while True:
 r, i, j = i, j, i + j
 yield r

for rabbits in fibonacci():
 print rabbits,
 if rabbits > 100: break
1 1 2 3 5 8 13 21 34 55 89 144

24

Closures
Exploiting the fact that def is an executable
statement that creates a new function object
(and also exploiting lexical scoping)...:
def makeAdder(addend):
 def adder(augend):
 return augend + addend
 return adder
a23 = makeAdder(23)
a42 = makeAdder(42)
print a23(100), a42(100), a23(a42(100))
123 142 165

25

Decorators
@<decorator>
def <name> etc, etc

is like:
def <name> etc, etc
<name> = <decorator>(<name>)

Handy syntax to immediately apply a HOF.
(<decorator> may be a name or a call)

26

Classes ("new-style")
class <name>(<bases>):
 <body>

<body> generally is a series of def and
assignment statements; all names defined or
assigned become attributes of the new class
object <name> (functions become "methods")

attributes of any of the bases are also
attributes of the new class, unless
"overridden" (assigned or defined in body)

27

Class instantiation
To create an instance, just call the class:
class eg(object):
 cla = [] # class attribute
 def __init__(self): # inst. initializer
 self.ins = {} # inst. atttribute
 def meth1(self, x): # a method
 self.cla.append(x)
 def meth2(self, y, z): # another method
 self.ins[y] = z
es1 = eg()
es2 = eg()

28

Classes and instances
print es1.cla, es2.cla, es1.ins, es2.ins
[] [] {} {}

es1.meth1(1); es1.meth2(2, 3)
es2.meth1(4); es2.meth2(5, 6)
print es1.cla, es2.cla, es1.ins, es2.ins
[1, 4] [1, 4] {2: 3} {5: 6}
print es1.cla is es2.cla
True
print es1.ins is es2.ins
False

29

Lookup internals
inst.method(arg1, arg2)
 ==>
type(inst).method(inst, arg1, arg2)

inst.aname [[whether to call it, or not!]]
 ==> ("descriptors" may alter this...)
1. look in inst.__dict__['aname']
2. look in type(inst).__dict__['aname']
3. look in each of type(inst).__bases__
4. try type(inst).__getattr__(inst, 'aname')
5. if everything fails, raise AttributeError

30

Subclassing
class sub(eg):
 def meth2(self, x, y=1): # override
 eg.meth2(self, x, y) # super-call
 # or: super(sub, self).meth2(x, y)

class repeater(list):
 def append(self, x):
 for i in 1, 2:
 list.append(self, x)

class data_overrider(sub):
 cla = repeater()

31

Properties
class blah(object):
 def getter(self):
 return ...
 def setter(self, value): ...
 name = property(getter, setter)
inst = blah()

Now...:

print inst.name # same as inst.getter()
inst.name = 23 # same as inst.setter(23)

32

Why properties matter
you never need to "hide" attributes behind
getter/setter methods to remain flexible
just expose interesting attributes directly
if your next release needs a getter to
compute the value, and/or a setter,

just code the new methods as needed,
and wrap them up into a property
all code using your class keeps working!

down with boilerplate -- never code like:
def getFoo(self): return self._foo

33

Operator overloading
"special methods" names start and end with
double underscores -- there are legions...:

__new__ __init__ __del__ # init/final.
__repr__ __str__ __int__ # conversions
__lt__ __gt__ __eq__ ... # comparisons
__add__ __sub__ __mul__ ... # arithmetic
__call__ __hash__ __nonzero_ ...
__getattr__ __setattr__ __delattr__
__getitem__ __setitem__ __delitem__
__len__ __iter__ __contains__

Python calls special methods on the type
when you operate on the type's instances

34

An "unending" iterator
class Fibonacci(object):
 def __init__(self): self.i = self.j = 1
 def __iter__(self): return self
 def next(self):
 r, self.i = self.i, self.j
 self.j += r
 return r

for rabbits in Fibonacci():
 print rabbits,
 if rabbits > 100: break
1 1 2 3 5 8 13 21 34 55 89 144

35

Builtin functions
don't call special methods directly: builtin
functions do it for you "properly"
e.g.: abs(x), NOT x.__abs__()
there are many interesting builtins, e.g.:

abs any all chr cmp compile dir enumerate
eval getattr hasattr hex id intern
isinstance iter len max min oct open ord
pow range repr reversed round setattr
sorted sum unichr xrange zip

many more useful functions and types are
in modules in the standard library

36

Example: index a textfile
build word -> [list of linenumbers] map
indx = {}
with open(filename) as f:
 for n, line in enumerate(f):
 for word in line.split():
 indx.setdefault(word, []).append(n)
display by alphabetical-ordered word
for word in sorted(indx):
 print "%s:" % word,
 for n in indx[word]: print n,
 print

37

Importing modules
import modulename
from some.package import modulename

in either case, use modulename.whatever
naming shortcuts available, but not
recommended (namespaces are good!):

may shorten names with as clause:
import longmodulename as z

then use z.whatever
from longmodulename import whatever
from longmodulename import *

38

Import example
import math
print math.atan2(1, 3)
emits 0.321750554397
print atan2(1, 3)
raises a NameError exception
from math import atan2

injects atan2 in the current namespace
handy in interactive sessions, but often
unclear in "real" programs -- avoid!
even more so:

from math import *
39

Defining modules
every Python source file wot.py is a module
just import wot

must reside in the import-path
...which is list path in stdlib module sys,
each item a string that names a directory
(or zipfile, ...) containing Python modules
also importable: bytecode files (wot.pyc),
automatically made by the Python
compiler when you import a source file
also importable: binary extensions
(wot.pyd), coded in C (or pyrex, SWIG, ...)

40

What's in a module?
a module is a simple object w/attributes
the attributes of a module are its "top-
level" names
as bound by assignments, or by binding
statements: class, def, import, from
module attributes are also known as "global
variables" of the module
may also be bound or rebound "from the
outside" (questionable practice, but useful
particularly for testing purposes, e.g. in the
Mock Object design pattern)

41

Packages
a package is a module containing other
modules (& possibly sub-packages...)
lives in a directory with an __init__.py:

__init__.py is the "module body"
often empty (it then just "marks" the
directory as being a package)
modules are .py files in the directory
subpackages are subdirs w/__init__.py

parent directory must be in sys.path
import foo.bar or from foo import bar

42

"Batteries Included"
standard Python library (round numbers):

190 plain ("top-level") modules
math, sys, os, struct, re, random, gzip...
socket, select, urllib, ftplib, rfc822, ...

13 top-level packages w/300 modules
bsddb, compiler, ctypes, curses, email ...

115 encodings modules
430 unit-test modules
185 modules in Demo/
165 modules in Tools/

43

"Other batteries"
http://cheeseshop.python.org/pypi : 2222
packages registered as of Apr 8, 2007
Major topics of these 3rd-party extensions:

Communications (94)
Database (152)
Desktop Environment (22)
Education (25)
Games/Entertainment (39)
Internet (359)
Multimedia (106)
Office/Business (44)
Scientific/Engineering (168)
Security (44)
Software Development (933)
System (153)
Terminals (12)

44

http://cheeseshop.python.org/pypi
http://cheeseshop.python.org/pypi

3rd-party extensions
GUIs (Tkinter, wxPython, PyQt, platform-sp)
SQL DBs (sqlite, gadfly, mysql, postgresql,
Oracle, DB2, SAP/DB, Firebird, MSSQL...)
and wrappers (SQLObject, SQLAlchemy...)
computation (numpy and friends, PIL, SciPy,
gmpy, mxNumber, MDP, pycripto, ...)
net & web (mod_python, WSGI, TurboGears,
Django, pylons, Quixote, Twisted, ...)
development environments and tools
games, multimedia, visualization, ...
integration w/C, C++, Java, .NET, Fortran...

45

stdlib: a μm deeper
some fundamentals: bisect, copy, collections,
functools, heapq, inspect, itertools, re,
struct, sys, subprocess, threading, Queue...
testing/debugging: doctest, unittest, pdb, ...
file and text processing: fileinput, linecache,
cStringIO, readline, curses, textwrap,
tempfile, codecs, unicodedata, gzip, bz2...
persistence/DBs: marshal, pickle, shelve,
dbm, bsddb, sqlite3 (other DB: 3rd-party)
time/date: time, datetime, sched, calendar

key 3rd-party helpers: pytz, dateutil
math, cmath, operator, random, decimal
plus: tons and tons of net/web stuff

46

GvR's "simple wget"

47

import sys, urllib, os
def hook(*a): print a
for url in sys.argv[1:]:
 fn = os.path.basename(url)
 print url, "->", fn
 urllib.urlretrieve(url, fn, hook)

A multi-threaded wget
import sys, urllib, os, threading, Queue
q = Queue.Queue()
class Retr(threading.Thread):
 def run(self):
 self.setDaemon(True)
 def hook(*a): print '%s: %s' % (fn, a)
 while True:
 url = q.get()
 fn = os.path.basename(url)
 print url, "->", fn
 urllib.urlretrieve(url, fn, hook)
for i in range(10): Retr().start()
for url in sys.argv[1:]: q.put(url)

48

some stdlib packages
compiler: parse and compile Python code
ctypes: access arbitrary DLL/.so
distutils: build/distribute/install packages
email: parse/create RFC2822-related files
hotshot: one of several Python profilers
idlelib: support for IDLE & other IDEs
logging: guess what
xml: XML handling (subpackages: xml.sax,
xml.dom, xml.etree, xml.parsers)

49

ctypes toy example
if sys.platform == 'win32':
 libc = ctypes.cdll.msvcrt
elif sys.platform == 'darwin':
 libc = ctypes.CDLL('libc.dylib')
else:
 libc = ctypes.CDLL('libc.so.6')
nc = libc.printf("Hello world\n")
assert nc == 12

50

