
Copyright ©2007, Google Inc

Design Patterns in Python

Alex Martelli (aleax@google.com)

http://www.aleax.it/gdd_pydp.pdf

mailto:aleax@google.com
mailto:aleax@google.com
http://www.aleax.it/accu_tmsd.pdf
http://www.aleax.it/accu_tmsd.pdf

The "levels" of this talk

2

Shu

Ha

Ri

Py

DP("Retain")

("Detach")

("Transcend")

Hit the ground running...

3

"Forces": some rich,
complex subsystem
offers a lot of useful
functionality; client
code interacts with
several parts of this
functionality in a way
that's "out of control"
this causes many
problems for client-code
programmers AND
subsystem ones too (complexity + rigidity)

Solution: the "Facade" DP

4

interpose a simpler
"Facade" object/class
exposing a controlled
subset of functionality

client code now calls
into the Facade, only
the Facade implements
its simpler functionality
via calls into the rich,
complex subsystem

subsystem implementation
gains flexibility, clients gain simplicity

© 2004 AB Strakt 17
STRAKT

DP "Facade"

! existing supplier code ! provides rich,
complex functionality in protocol S

! we need a simpler "subset" C of S

! facade code " implements and supplies C
(by calling S on !)

Facade is a Design Pattern
summary of a frequent design problem +
structure of a solution to that problem (+
pros and cons, alternatives, ...), and:

A NAME (much easier to retain/discuss!)
"descriptions of communicating objects and
classes customized to solve a general design
problem in a particular context"
that's NOT: a data structure, algorithm,
domain-specific system architecture,
programming-language/library feature
MUST be studied in a language's context!
MUST supply Known Uses ("KU")

5

Some Facade KUs
...in the Python standard library...:

dbhash facades for bsddb
highly simplified/subset access
also meets the "dbm" interface (thus,
also an example of the Adapter DP)

os.path: basename, dirname facade for
split + indexing; isdir (&c) facade for
os.stat + stat.S_ISDIR (&c)

Facade is a structural DP (we'll see another,
Adapter, later; in dbhash, they "merge"!-)

6

Design Patterns

7

What's a Design Pattern

8

summary of a frequent design problem +
structure of a solution to that problem +
pros and cons, alternatives, ..., and:

A NAME (much easier to retain/discuss!)
"descriptions of communicating objects and
classes customized to solve a general design
problem in a particular context"
DPs are NOT: data structures, algorithms,
domain-specific system architectures,
programming language features
MUST be studied in a language's context!
MUST supply Known Uses ("KU")

Many Good DP Books

9(biblio on the last slide)

Classic DP Categories
Creational: ways and means of object
instantiation
Structural: mutual composition of classes or
objects (the Facade DP is Structural)
Behavioral: how classes or objects interact
and distribute responsibilities among them
Each can be class-level or object-level

10

Prolegomena to DPs
"program to an interface, not to an
implementation"

that's mostly done with "duck typing" in
Python -- rarely w/"formal" interfaces
actually similar to "signature-based
polymorphism" in C++ templates

11

Duck Typing Helps a Lot!

12

Teaching the ducks to type takes a while,
but saves you a lot of work afterwards!-)

Prolegomena to DPs
"favor object composition over class
inheritance"

in Python: hold, or wrap
inherit only when it's really convenient

expose all methods in base class (reuse
+ usually override + maybe extend)
but, it's a very strong coupling!

13

Python: hold or wrap?

14

Python: hold or wrap?
“Hold”: object O has subobject S as an
attribute (maybe property) -- that’s all

use self.S.method or O.S.method
simple, direct, immediate, but... pretty
strong coupling, often on the wrong axis

15

holder holdee

client

Python: hold or wrap?
“Wrap”: hold (often via private name) plus
delegation (so you directly use O.method)

explicit (def method(self...)...self.S.method)
automatic (delegation in __getattr__)
gets coupling right (Law of Demeter)

16

wrapper wrappee

client

class RestrictingWrapper(object):
def __init__(self, w, block):
self._w = w
self._block = block

def __getattr__(self, n):
if n in self._block:
raise AttributeError, n

return getattr(self._w, n)
...

Inheritance cannot restrict!

E.g: wrap to "restrict"

17

Creational Patterns
not very common in Python...
...because "factory" is essentially built-in!-)

18

Creational Patterns [1]
"we want just one instance to exist"

use a module instead of a class
no subclassing, no special methods, ...

make just 1 instance (no enforcement)
need to commit to "when" to make it

singleton ("highlander")
subclassing not really smooth

monostate ("borg")
Guido dislikes it

19

Singleton ("Highlander")
class Singleton(object):
def __new__(cls, *a, **k):
if not hasattr(cls, '_inst'):
cls._inst = super(Singleton, cls
).__new__(cls, *a, **k)

return cls._inst

subclassing is a problem, though:
class Foo(Singleton): pass
class Bar(Foo): pass
f = Foo(); b = Bar(); # ...???...
problem is intrinsic to Singleton

20

Monostate ("Borg")
class Borg(object):
_shared_state = {}
def __new__(cls, *a, **k):
obj = super(Borg, cls
).__new__(cls, *a, **k)

obj.__dict__ = cls._shared_state
return obj

subclassing is no problem, just:
class Foo(Borg): pass
class Bar(Foo): pass
class Baz(Foo): _shared_state = {}
data overriding to the rescue!

21

Creational Patterns [2]
"we don't want to commit to instantiating a
specific concrete class"

"Dependency Injection" DP
no creation except "outside"
what if multiple creations are needed?

"Factory" subcategory of DPs
may create w/ever or reuse existing
factory functions (& other callables)
factory methods (overridable)
abstract factory classes

22

Structural Patterns
"Masquerading/Adaptation" subcategory:

Adapter: tweak an interface (both class and
object variants exist)
Facade: simplify a subsystem's interface
...and many others I don't cover, such as:

Bridge: many implementations of an
abstraction, many implementations of a
functionality, no repetitive coding
Decorator: reuse+tweak w/o inheritance
Proxy: decouple from access/location

23

Adapter
client code γ requires a protocol C
supplier code σ provides different protocol
S (with a superset of C's functionality)
adapter code α "sneaks in the middle":

to γ, α is a supplier (produces protocol C)
to σ, α is a client (consumes protocol S)
"inside", α implements C (by means of
appropriate calls to S on σ)

24

© 2004 AB Strakt 11

STRAKT

DP "Adapter"

! client code ! requires a certain protocol C

! supplier code " provides different protocol
S (with a superset of C's functionality)

! adapter code # "sneaks in the middle":
• to !, # is supplier code (produces protocol C)

• to ", # is client code (consumes protocol S)

• "inside", # implements C (by means of calls to S on ")

("interface" vs "protocol": "syntax" vs "syntax
+ semantics + pragmatics")

Toy-example Adapter
C requires method foobar(foo, bar)
S supplies method barfoo(bar, foo)
e.g., σ could be:
class Barfooer(object):
 def barfoo(self, bar, foo):

...

25

Object Adapter
per-instance, with wrapping delegation:
class FoobarWrapper(object):
def __init__(self, wrappee):
self.w = wrappee

def foobar(self, foo, bar):
return self.w.barfoo(bar, foo)

foobarer=FoobarWrapper(barfooer)

26

Class Adapter (direct)
per-class, w/subclasing & self-delegation:
class Foobarer(Barfooer):
def foobar(self, foo, bar):
return self.barfoo(bar, foo)

foobarer=Foobarer(...w/ever...)

27

Class Adapter (mixin)
flexible, good use of multiple inheritance:
class BF2FB:
def foobar(self, foo, bar):
return self.barfoo(bar, foo)

class Foobarer(BF2FB, Barfooer):
 pass

foobarer=Foobarer(...w/ever...)

28

Adapter KU
socket._fileobject: from sockets to file-like
objects (w/much code for buffering)
doctest.DocTestSuite: adapts doctest tests
to unittest.TestSuite
dbhash: adapt bsddb to dbm
StringIO: adapt str or unicode to file-like
shelve: adapt "limited dict" (str keys and
values, basic methods) to complete mapping

via pickle for any <-> string
+ UserDict.DictMixin

29

Adapter observations
some RL adapters may require much code
mixin classes are a great way to help adapt
to rich protocols (implement advanced
methods on top of fundamental ones)
Adapter occurs at all levels of complexity
in Python, it's _not_ just about classes and
their instances (by a long shot!-) -- often
callables are adapted (via decorators and
other HOFs, closures, functools, ...)

30

Facade vs Adapter
Adapter's about supplying a given protocol
required by client-code

or, gain polymorphism via homogeneity
Facade is about simplifying a rich interface
when just a subset is often needed
Facade most often "fronts" for a subsystem
made up of many classes/objects, Adapter
"front" for just one single object or class

31

Behavioral Patterns
Template Method: self-delegation

..."the essence of OOP"...
some of its many Python-specific variants

32

Template Method
great pattern, lousy name

"template" very overloaded
generic programming in C++
generation of document from skeleton
...

a better name: self-delegation
directly descriptive!-)

33

Classic TM
abstract base class offers "organizing
method" which calls "hook methods"
in ABC, hook methods stay abstract
concrete subclasses implement the hooks
client code calls organizing method

on some reference to ABC (injecter, or...)
which of course refers to a concrete SC

34

TM skeleton
class AbstractBase(object):
def orgMethod(self):
self.doThis()
self.doThat()

class Concrete(AbstractBase):
def doThis(self): ...
def doThat(self): ...

35

KU: cmd.Cmd.cmdloop
def cmdloop(self):
 self.preloop()
 while True:
 s = self.doinput()
 s = self.precmd(s)
 finis = self.docmd(s)
 finis = self.postcmd(finis,s)
 if finis: break
 self.postloop()

36

Classic TM Rationale
the "organizing method" provides
"structural logic" (sequencing &c)
the "hook methods" perform "actual
``elementary'' actions"
it's an often-appropriate factorization of
commonality and variation

focuses on objects' (classes')
responsibilities and collaborations: base
class calls hooks, subclass supplies them
applies the "Hollywood Principle": "don't
call us, we'll call you"

37

A choice for hooks
class TheBase(object):
 def doThis(self):
 # provide a default (often a no-op)
 pass
 def doThat(self):
 # or, force subclass to implement
 # (might also just be missing...)
 raise NotImplementedError

Default implementations often handier, when
sensible; but "mandatory" may be good docs.

38

class Queue:
...
def put(self, item):
self.not_full.acquire()
try:
while self._full():
self.not_full.wait()

self._put(item)
self.not_empty.notify()

finally:
self.not_full.release()

def _put(self, item): ...

KU: Queue.Queue

39

Queue’s TMDP
Not abstract, often used as-is

thus, implements all hook-methods
subclass can customize queueing discipline

with no worry about locking, timing, ...
default discipline is simple, useful FIFO
can override hook methods (_init, _qsize,
_empty, _full, _put, _get) AND...
...data (maxsize, queue), a Python special

40

class LifoQueueA(Queue):
def _put(self, item):
self.queue.appendleft(item)

class LifoQueueB(Queue):
def _init(self, maxsize):
self.maxsize = maxsize
self.queue = list()

def _get(self):
return self.queue.pop()

Customizing Queue

41

"Factoring out" the hooks
"organizing method" in one class
"hook methods" in another
KU: HTML formatter vs writer
KU: SAX parser vs handler
adds one axis of variability/flexibility
shades towards the Strategy DP:

Strategy: 1 abstract class per decision
point, independent concrete classes
Factored TM: abstract/concrete classes
more "grouped"

42

TM + introspection
"organizing" class can snoop into "hook"
class (maybe descendant) at runtime

find out what hook methods exist
dispatch appropriately (including "catch-
all" and/or other error-handling)

43

KU: cmd.Cmd.docmd
def docmd(self, cmd, a):
 ...
 try:
 fn = getattr(self, 'do_' + cmd)
 except AttributeError:
 return self.dodefault(cmd, a)
 return fn(a)

44

Questions & Answers

45

Q?
A!

46

1.Design Patterns: Elements of Reusable Object-Oriented Software --
Gamma, Helms, Johnson, Vlissides -- advanced, very deep, THE classic
"Gang of 4" book that started it all (C++)
2.Head First Design Patterns -- Freeman -- introductory, fast-paced,
very hands-on (Java)
3.Design Patterns Explained -- Shalloway, Trott -- introductory, mix
of examples, reasoning and explanation (Java)
4.The Design Patterns Smalltalk Companion -- Alpert, Brown, Woolf
-- intermediate, very language-specific (Smalltalk)
5.Agile Software Development, Principles, Patterns and Practices --
Martin -- intermediate, extremely practical, great mix of theory and
practice (Java, C++)
6.Refactoring to Patterns -- Kerievsky -- introductory, strong
emphasis on refactoring existing code (Java)
7.Pattern Hatching, Design Patterns Applied -- Vlissides -- advanced,
anecdotal, specific applications of idea from the Gof4 book (C++)
8.Modern C++ Design: Generic Programming and Design Patterns
Applied -- Alexandrescu -- advanced, very language specific (C++)

