
©2012 Google -- aleax@google.com

Permission or Forgiveness?

http://www.aleax.it/europ12_fop.pdf

A fontly note to my critics
the proportionally-spaced font used in my
slides is NOT Comic Sans (as some
[nasty?] critics have long alleged)
it's Apple® Chalkboard (goes with the
blackboard-background theme)
it's this one, not this one!
if you think Apple's visual designers have no
taste, take it up with Cupertino...;-)

2

Permission or Forgiveness?
"It's easier to ask forgiveness than permission"

Rear Admiral Grace Murray Hopper, PhD
(Mathematics, Yale); 1906-1992

3

The Amazing Grace
Mark I, compilers, COBOL, "debugging", ...
1st "CS man (!) of the year", DPMA 1969
1st ever American AND 1st ever woman to
be a Distinguished Fellow of the British CS
Defense Distinguished Service Medal
National Medal of Technology

4

What did EAFP mean?
GMH specifically referred to innovating
from inside a bureaucratic organization

for Hopper, that would be mostly the
Navy, where she served for decades
but clearly it also applies to large private
firms with THEIR bureaucracies (mostly,
middle managers...)

Clearly, it worked very well for her, given:
her amazing track record of innovation
her promotions all the way to Commodore
the recognition that was showered on her

5

Hopper EAFP Examples

6

Why does it tend to work?
even the best bureaucrat has incentives to
deny permission if and when asked

makes life/work more complicated
may present a career risk; denial doesn't

in most cases, the bureaucrat will also,
later, have incentives to grant forgiveness

(if the issue ever even comes up!-)
again: it's the path of least resistance /
work / complications / career risk
especially for a successful "skunkworks"
project

7

Beyond bureaucracy...?
Python (exceptions vs checks)
concurrency (optimistic vs locks)
source-code control systems (!)
networking (CD vs CA)
"do it right the first time" vs "launch and
iterate" and "fail, but fail FAST"
when DOESN'T it work?

on SENSIBLE rules, principles, orgs
but especially: when it breaks Kant's
Categorical Imperative...

8

"Permission"
def with_perm(filepath, default=None):
 if os.access(filepath, os.R_OK):
 with open(filepath) as f:
 return f.read()
 else:
 return default

What's wrong w/this code? A lot -- it's even
explicitly discouraged at docs.python.org!-)

9

A.K.A "LBYL"

"Forgiveness"
def with_forg(filepath, default=None):
 try:
 f = open(filepath)
 except IOError:
 return default
 else:
 with f:
 return f.read()

Real vs effective UID -- but, setuid scripts are not
usually a good/secure idea anyway;-).

10

A.K.A "EAFP"

Types: P or F? (1)
Once there was a similar choice...:

if isinstance(x, (int, float)):
 return x + 1
else:
 return default
 ...vs good ol' "duck typing"...:
try:
 return x + 1
except TypeError:
 return default

11

Types: P or F? (2)
But, today...:

if isinstance(x, numbers.Number):
 return x + 1
else:
 return default

...is an idiomatic, well-supported way to perform
"typeclass"-checking... (for the relatively few
"typeclasses" supported as ABCs in the
collections and numbers standard library
modules; a framework might add some more).

12

Write a new typeclass ABC?
if it captures an important, well-recognized
abstraction (e.g "polygon", "image", "sound", ...)

capable of multiple implementations
warranted for important performance /
memory-footprint trade-offs

a core concept in the framework's field
ideally with the ability to supply useful
auxiliary methods (though "pure interfaces"
may be OK too, esp. within a "family")
maybe subclasses some existing ABC...

beware of the "guy with a hammer" syndrome!-)
not ALL problems are nails...

13

Defaults: even better!
if hasattr(x, 'foo'): ...
vs
getattr(x, 'foo', 'bar')

if key in d:
vs
d.get(key, 'default')

Neither Permission nor Forgiveness,
but rather: a useful "Plan B"!-)

14

Optimistic Concurrency
traditional "permission" approach:

acquire locks / mutexes guarding all
needed resources, THEN perform the
desired set of operations

modern, speedy "forgiveness" approach:
perform the desired set of operations
within a "transaction"
must be able to detect and reject rare
transactions which suffered "collisions"
retry if needed (rarely... one hopes!-)

OCC, STM, ...
15

E.g: source-code control
bad old "permission" way:

"check out" all files you need to change
blocks everybody else's access to them

develop on your WS: change, test, &c
"commit" the changeset

releases the files
much better, popular "forgiveness" way:

change, test, &c, on local file copies
"commit" the changeset

detects conflicts, forces reconciliation
16

Networking
"permission": e.g "token ring" - only the
node with the token can put a packet on
the wire, then (or instead) passes the
token; avoids collisions
"forgiveness": e.g "Ethernet" - just "start
talking" (if the wire's not busy) - detect
collisions, "back off" & retry later
again: can be much faster (except under
unbearable overload conditions where it
"thrashes") -- sometimes more robust, but
that depends on many other details

17

Launching a Product
"slow but safe", permission-ish approach:

studies, focus groups, &c
find out what consumers "want"

top-down design and development
and finally the Big Launch

"agile", forgiveness-like approach:
launch ("beta"!) early, iterate often

based on real-world feedback
"fail, but fail FAST"

varies by product type, innovation, cost, ...

18

When NOT a good idea (1)
when there are sensible, appropriate rules
and principles in place,

AND a sensible, appropriate process to
work with them

e.g: mandatory code review before commit
to the reference repository is allowed

pair programming not a good alternative
"working with The System" may sound "too
mainstream" but it can most often be a
good idea (in the right environment)!

19

When NOT a good idea (2)
one of the strongest examples...:
mandatory preliminary reviews of product
plans and architectures by security experts
to spot privacy/security risks

security cannot be "an afterthought"!
procedural arrangement becomes crucial

"pre-coding" architectural review
"post-coding" security/privacy review

the difficult part: not too hot, nor too cold

20

When NOT a good idea (3)
in a lot of common human interactions
Kant's "Grundlegung zur Metaphysik der
Sitten": "Act in such a way that you treat
humanity, whether in your own person or in
the person of another, always at the same
time as an end, and never simply as a
means".
example: you don't just plagiarize somebody
else's thesis counting on being able to
apologize if caught... it's not about it
working or not, it's just WRONG!

21

Q & A
http://www.aleax.it/

europ12_fop.pdf

22

? !

