Permission or Forgiveness?

http://www.aleax.it/europl2_fop.pdf




A fontly note to my critics

o the proportionally-spaced font used in my

slides is NOT Comic Sans (as some
[nasty?] critics have long alleged)

s it's Apple® Chalkboard (goes with the
blackboard-background theme)

s it's this one, not this one!

o if you think Apple's visual designers have no
taste, take it up with Cupertino...;-)




Permission or Forgiveness?

@ "It's easier to ask forgiveness than permission”

@ Rear Admiral Grace Murray Hopper, PhD
(Mathematics, Yale); 1906-1992




The Amazing Grace

@ Mark I, compilers, COBOL, "debugging”, ..
@ Ist "CS man (!) of the year", DPMA 1969

@ 1st ever American AND 1st ever woman to
be a Distinguished Fellow of the British CS

@ Defense Distinguished Service Medal

@ National Medal of Technology




What did EAFP mean?

@ GMH specifically referred to innovating
from inside a bureaucratic organization

o for Hopper, that would be mostly the
Navy, where she served for decades

@ but clearly it also applies to large private

firms with THEIR bureaucracies (mostly,
middle managers...)

@ Clearly, it worked very well for her, given:
@ her amazing track record of innovation
@ her promotions all the way to Commodore
@ the recognition that was showered on her

5




Hopper EAFP Examples

181 My

new language




Why does it tend to work?

® even the best bureaucrat has incentives to
deny permission if and when asked

@ makes life/work more complicated
@ may present a career risk; denial doesn't
@ in most cases, the bureaucrat will also,

later, have incentives to grant forgiveness
o (if the issue ever even comes up!-)

@ again: it's the path of least resistance /
work / complications / career risk

o especially for a successful "skunkworks"
project




Beyond bureaucracy...?

@ Python (exceptions vs checks)

@ concurrency (optimistic vs locks)

@ source-code control systems (!)

@ networking (CD vs CA)

o "do it right the first time" vs "launch and

iterate" and "fail, but fail FAST"
® when DOESN'T it work?
@ on SENSIBLE rules, principles, orgs

@ but especially: when it breaks Kant's
Categorical Imperative...




"Permission”

def with_perm(filepath, default=None):
1f os.access(filepath, os.R_0K):
with open(filepath) as f:
return f.read()
else:

return default A.K.A "LBYL

What's wrong w/this code? A lot -- it's even
explicitly discouraged at docs.python.org!-)




"Forgiveness"

def with_forg(filepath, default=None):
try:
f = open(filepath)
except IOError:
return default
else:
with f:
return f.read()

A.K.A "EAFP"

Real vs effective UID -- but, setuid scripts are not
usually a good/secure idea anyway;-).

10



Types: P or F? (1)

Once there was a similar choice...:

1f isinstance(x, (int, float)):
return x + 1
else:
return default
..vs good ol' "duck typing"...:

try:
return x + 1
except TypeError:
return default




Types: P or F? (2)

But, today...:

1f isinstance(x, numbers.Number):
return x + 1

else:
return default

..is an idiomatic, well-supported way to perform
"typeclass"-checking... (for the relatively few
"typeclasses” supported as ABCs in the
collections and numbers standard library

modules; a framework might add some more).

12



Write a new typeclass ABC?

@ if it captures an important, well-recognized
abstraction (e.g "polygon”, "image", “sound", ...)

@ capable of multiple implementations

@ warranted for important performance /
memory-footprint trade-offs

@ a core concept in the framework's field

@ ideally with the ability to supply useful
auxiliary methods (though “pure interfaces"
may be OK too, esp. within a "family")

@ maybe subclasses some existing ABC...
@ beware of the "guy with a hammer" syndrome!-)
@ not ALL problems are nails...

13




Defaults: even better!

1f hasattr(x, 'foo'): ...
VS
getattr(x, 'foo', 'bar')

if key in d:
AAS)
d.get(key, 'default')

Neither Permission nor Forgiveness,
but rather: a useful "Plan B"!-)




Optimistic Concurrency

@ traditional "permission” approach:

@ acquire locks / mutexes guarding all
needed resources, THEN perform the
desired set of operations

@ modern, speedy "forgiveness" approach:

@ perform the desired set of operations
within a "transaction”

@ must be able to detect and reject rare
transactions which suffered "collisions"

o retry if needed (rarely.. one hopes!-)
@ OCC, STM, ...




E.g: source-code control

@ bad old "permission” way:
@ "check out" all files you need to change
@ blocks everybody else's access to them
@ develop on your WS: change, test, &c
o "commit” the changeset

@ releases the files
@ much better, popular "forgiveness" way:
@ change, test, &c, on local file copies
@ "commit” the changeset

o detects conflicts, forces reconciliation

16




Networking

o "permission”: e.g "token ring" - only the
node with the token can put a packet on
the wire, then (or instead) passes the
token; avoids collisions

@ "forgiveness": e.g "Ethernet" - just "start

talking" (if the wire's not busy) - detect
collisions, "back off" & retry later

@ again: can be much faster (except under
unbearable overload conditions where it
"thrashes'") -- sometimes more robust, but
that depends on many other details




Launching a Product

@ "slow but safe”, permission-ish approach:
@ studies, focus groups, &c
@ find out what consumers "want"
@ top-down design and development
@ and finally the Big Launch

@ "agile”, forgiveness-like approach:
@ launch ("beta"!) early, iterate often
@ based on real-world feedback
@ "fail, but fail FAST"
@ varies by product type, innovation, cost, ...

18



When NOT a good idea (1)

@ when there are sensible, appropriate rules
and principles in place,

@ AND a sensible, appropriate process to
work with them

@ e.g: mandatory code review before commit

to the reference repository is allowed
@ pair programming not a good alternative

o "working with The System" may sound "too
mainstream" but it can most often be a
good idea (in the right environment)!




When NOT a good idea (2)

@ one of the strongest examples...:

@ mandatory preliminary reviews of product
plans and architectures by security experts
to spot privacy/security risks

@ security cannot be "an afterthought"!

@ procedural arrangement becomes crucial
@ "pre-coding” architectural review
@ "post-coding" security/privacy review

@ the difficult part: not too hot, nor too cold




When NOT a good idea (3)

@ in a lot of common human interactions

@ Kant's "Grundlegung zur Metaphysik der
Sitten": "Act in such a way that you treat
humanity, whether in your own person or in
the person of another, always at the same

time as an end, and never simply as a
means".

@ example: you don't just plagiarize somebody
else's thesis counting on being able to
apologize if caught... it's not about it
working or not, it's just WRONG!




Q& A

http://www.aleax.it/
europl2_fop.pdf

?




