
Copyright ©2011, Google Inc 

Practical Python Patterns

Alex Martelli (aleax@google.com)

http://www.aleax.it/europ11_pydp.pdf



The "levels" of this talk

2

Shu

Ha

Ri

Py

DP("Retain")

("Detach")

("Transcend")



A Pattern Example

3

"Forces": a rich, 
complex system offers a 
lot of functionality; 
client code interacts 
with many parts of this 
functionality in a way 
that's "out of control"
this causes many 
problems for client-code 
programmers AND the 
system's ones too

(complexity + rigidity)



Solution: the "Facade" DP

4

interpose a simpler 
"Facade" object/class 
exposing a controlled 
subset of functionality

client code now calls 
into the Facade, only
the Facade implements 
its simpler functionality 
via calls into the rich, 
complex subsystem

subsystem implementers 
gains flexibility, clients gain simplicity 

© 2004 AB Strakt 17
STRAKT

DP "Facade"

! existing supplier code ! provides rich, 
complex functionality in protocol S

! we need a simpler "subset" C of S

! facade code " implements and supplies C 
(by calling S on !)



Facade is a Design Pattern
summary of a frequent design problem + 
structure of a solution to that problem (+ 
pros and cons, alternatives, ...), and:

A NAME (much easier to retain/discuss!)
"descriptions of communicating objects and 
classes customized to solve a general design 
problem in a particular context"
that's NOT: a data structure, an algorithm, 
a domain-specific system architecture, a 
programming-language/library feature
MUST be studied in a specific context!
BEST: give Known Uses ("KU"), "stars"

5



Some Facade KUs
...in the Python standard library...:

dbhash facades for bsddb
highly simplified/subset access
also meets the "dbm" interface (thus, 
also an example of the Adapter DP)

os.path: basename, dirname facade for 
split + indexing; isdir (&c) facade for 
os.stat + stat.S_ISDIR (&c)

Facade is a structural DP (we'll see another, 
Adapter, later; in dbhash, they "merge"!-)

6



Is Facade a "Pythonic" DP?
yes... and no

it works just fine in Python, but...
...it works just as well most everywhere!
i.e., it is, rather, a "universal" DP

points to ponder/debate...:
is it "Facade" if it offers all functionality?
is it "Facade" if it _adds_ functionality?

do taxonomies ever work fully?-)
do other DPs/idioms "go well with it"?

"above"? "below"? "to the side"?

7



Design Patterns

8



What's a Design Pattern

9

summary of a frequent design problem + 
structure of a solution to that problem + 
pros and cons, alternatives, ..., and:

A NAME (much easier to retain/discuss!)
"descriptions of communicating objects and 
classes customized to solve a general design 
problem in a particular context"
DPs are NOT: data structures, algorithms, 
domain-specific system architectures, 
programming language features
MUST be studied in a language's context!
Best: supply Known Uses ("KU") & "stars"



Step back: what's a Pattern?

10

identify a closely related class of problems
if there is no problem, why solve it?-)

identify a class of solutions to the problems
closely related, just like the problems are

may exist in any one of many different 
possible scales ("phases of work")

just like the problems do
Design patterns are exactly those patterns 
whose scale/phase is... design!



A Pattern's "problem(s)"

11

each Pattern addresses a problem
rather, a closely related class of problems

a problem is defined by:
"forces"

constraints, desiderata, side effects, ...
"context" (including: what technologies 
can be deployed to solve the problem)



A Pattern's "solution(s)"

12

to write-up a pattern, you must identify a 
class of solutions to the problems

within the context (technologies, &c)
meaningful name and summary
a "middling-abstraction" description
real-world examples (if any!-), "stars"

one-star == "0/1 existing examples"
rationale, "quality without a name"
how it balances forces / +'s & issues
pointers to related/alternative patterns



Why bother w/Patterns?
identifying patterns helps all practitioners 
of a field "up their game"...
...towards the practices of the very best 
ones in the field

precious in teaching, training, self-study
precious in concise communication, esp. in 
multi-disciplinary cooperating groups
also useful in enhancing productivity

to recognize is faster than to invent
structured description helps recognition

13



"Design" is a vague term...
most generically, it can mean "purpose"
or specifically, a plan towards a purpose
a geometrical or graphical arrangement
an "arrangement" in a more abstract sense

...
in saying "Design Patterns", we mean 
"design" in the sense common to buildings 
architecture and SW development:

work phase "between" study/analysis and 
"actual building" (not temporally;-)

(SWers use "architecture" differently;-)
14



Other kinds of Patterns

15

Analysis: find/identify value-opportunities
Architecture: large-scale overall-system 
approaches to let subsystems cooperate
Human Experience: focus on how a system 
presents itself and interacts with people
Testing: how best to verify system quality
Cooperation: how to help people work 
together productively to deliver value
Delivery/Deployment: how to put the 
system in place (& adjust it iteratively)
...



What's a "Pythonic" Pattern?
a Design Pattern arising in contexts where 
(part of) the technology in use is Python
well-adapted to Python's strengths, if and 
when those strengths are useful
dealing with Python-specific issues, if any
basically, all the rest of this talk!

16



Many Good DP Books

17(biblio on the last slide)



Classic (Gof4) DP Categories
Creational: ways and means of object 
instantiation
Structural: mutual composition of classes or 
objects (the Facade DP is Structural)
Behavioral: how classes or objects interact 
and distribute responsibilities among them
Each can be class-level or object-level

18



Prolegomena to DPs
"program to an interface, not to an 
implementation"

that's mostly done with "duck typing" in 
Python -- rarely w/"formal" interfaces

in 2.6+, ABCs can change that a bit!
pretty similar to "signature-based 
polymorphism" in C++ templates

19



Duck Typing Helps!

20

Teaching the ducks to type takes a while, 
but saves you a lot of work afterwards!-)



Prolegomena to DPs
"favor object composition over class 
inheritance"

in Python: hold, or wrap
inherit only when it's really convenient

expose all methods in base class (reuse 
+ usually override + maybe extend)
but, it's a very strong coupling!
2.6+ ABCs can help with this, too

21



Python: hold or wrap?

22



Python: hold or wrap?
“Hold”: object O has subobject S as an 
attribute (maybe property) -- that’s all

use self.S.method or O.S.method
simple, direct, immediate, but... pretty 
strong coupling, often on the wrong axis

23

holder holdee

client



Python: hold or wrap?
“Wrap”: hold (often via private name) plus 
delegation (so you directly use O.method)

explicit (def method(self...)...self.S.method)
automatic (delegation in __getattr__)
gets coupling right (Law of Demeter)

24

wrapper wrappee

client



class RestrictingWrapper(object):
def __init__(self, w, block):
self._w = w
self._block = block

def __getattr__(self, n):
if n in self._block:
raise AttributeError, n

return getattr(self._w, n)
...

Inheritance cannot restrict!

E.g: wrap to "restrict"

25



Creational Patterns

26



Creational DPs: "Just One"
"we want just one instance to exist"

use a module instead of a class
no subclassing, no special methods, ...

make just 1 instance (no enforcement)
need to commit to "when" to make it

singleton ("highlander")
subclassing can never be really smooth

monostate ("borg")
Guido dislikes it

27



Singleton ("Highlander")
class Singleton(object):
def __new__(cls, *a, **k):	
if not hasattr(cls, '_inst'):
cls._inst = super(Singleton, cls
       ).__new__(cls, *a, **k)

return cls._inst
subclassing is always a problem, though:
class Foo(Singleton): pass
class Bar(Foo): pass
f = Foo(); b = Bar(); # ...???...
problem is intrinsic to Singleton

28



Monostate ("Borg")
class Borg(object):
_shared_state = {}
def __new__(cls, *a, **k):
obj = super(Borg, cls
       ).__new__(cls, *a, **k)

obj.__dict__ = cls._shared_state
return obj

 subclassing is no problem, just do...:
class Foo(Borg): pass
class Bar(Foo): pass
class Baz(Foo): _shared_state = {}
data overriding to the rescue!

29



Creational DPs: "Flexibility"
"we don't want to commit to instantiating a 
specific concrete class"

"Dependency Injection" DP
no creation except "outside"
what if multiple creations are needed?

"Factory" subcategory of DPs
may create w/ever or reuse existing
factory functions (& other callables)
factory methods (overridable)
factory classes (abstract & not)

30



DI: why we want it
class Scheduler(object):
  def __init__(self):
    self.i = itertools.count().next
    self.q = somemodule.PriorityQueue()
  def AddEvent(self, when, c, *a, **k):
    self.q.push((when, self.i(), c, a, k))
  def Run(self):
    while self.q:
      when, n, c, a, k = self.q.pop()
      time.sleep(when - time.time())
      c(*a, **k)
    

31



Side note...:
class PriorityQueue(object):
  def __init__(self):
    self.l = []
  def __len__(self):
    return len(self.l)
  def push(self, obj):
    heapq.heappush(self.l, obj)
  def pop(self):
    return heapq.heappop(self.l)

32



Fine, but...
...how to test Scheduler without long waits?
...how to integrate it with other subsystems' 
event loops, simulations, ...?

Core issue: Scheduler "concretely depends" 
on concrete objects (time.sleep, time.time).
Possible solutions:

1.  Template Method (Structural, see later)
2.  "Monkey Patching" (idiom)
3.  Dependency Injection

33



Template Method vs DI
See later, but, a summary:

      ...
      when, n, c, a, k = self.q.pop()
      self.WaitFor(when)
      c(*a, **k)
      ...
  def WaitFor(self, when):
    time.sleep(when - time.time())

To customize: subclass, override WaitFor

34



TM-vs-DI example
class sq(ss):
  def __init__(self):
    ss.__init__(self)
    ss.mtq = Queue.Queue()
  def WaitFor(self, when):
    try:
      while when>time.time():
        c, a, k = self.mtq.get(true,
                  time.time() - when)
        c(*a, **k)
    except Queue.Empty:
        return

35



TM-vs-DI issues
inheritance → strong, inflexible coupling

per-class complex, specialized extra logic
not ideal for testing

if another subsystem makes a scheduler, 
how does it know to make a test-
scheduler instance vs a simple one?

multiple integrations even harder than need 
be (but, there's no magic bullet for those!-)

36



Monkey-patching...
import ss
class faker(object): pass
fake = faker()
ss.time = fake
fake.sleep = ...
fake.time = ...

37

handy in emergencies, but...
...easily abused for NON-emergencies!

"gives dynamic languages a bad name"!-)
subtle, hidden "communication" via secret, 
obscure pathways (explicit is better!-)



Dependency Injection
class Scheduler(object):
  def __init__(self, tm=time.time,
                     sl=time.sleep):
    self.tm = tm
    self.sl = sl
  ...
      self.sl(when - self.tm())

38

a known use: standard library sched module!



With DI, "faking" is easy
class faketime(object):
  def __init__(self, t=0.0): self.t = t
  def time(self): return self.t
  def sleep(self, t): self.t += t

f = faketime()
s = Scheduler(f.time, f.sleep)
...

39



DI/TM "coopetition"
Not mutually exclusive...:
class Scheduler(object):
  def __init__(self, tm=time.time,
                     sl=time.sleep):
  ... # move key operation to a method:
  def WaitFor(self, when):
    self.sl(when-self.tm())
then may use either injection, or subclassing and 
overriding, (or both!-), for testing, integration, &c 

40



DI design-choice details
inject by constructor (as shown before)

with, or without, default dep. values?
ensure just-made instance is consistent
choose how "visible" to make the inject...

inject by setter
automatic in Python (use non-_ names)
very flexible (sometimes too much;-)

"inject by interface" (AKA "IoC type 1")
not very relevant to Python

DI: by code or by config-file/flags?

41



DI and factories
class ts(object):
  ...
  def Delegate(self, c, a, k):
    q = Queue.Queue()
    def f(): q.put(c(*a,**k))
    t = threading.Thread(target=f)
    t.start()
    return q

each call to Delegate needs a new Queue and a 
new Thread; how do we DI these objects...?
easy solution: inject factories for them!

42



DI and factories
class ts(object):
  def __init__(self, q=Queue.Queue,
                     t=threading.Thread):
    self.q = q
    self.t = t
  ...
  def Delegate(self, c, a, k):
    q = self.q()
    ...
    t = self.t(target=f)

pretty obvious/trivial solution when each class is 
a factory for its instances, of course;-)

43



The Callback Pattern
AKA "the Hollywood Principle"...:

"Don't call us, we'll call you!"

44



The "Callback" concept
it's all about library/framework code that 
"calls back" into YOUR code

rather than the "traditional" (procedural) 
approach where YOU call code supplied as 
entry points by libraries &c

AKA, the "Hollywood principle":
"don't call us, we'll call you"

by: Richard E. Sweet, in "The Mesa Programming 
Environment", SigPLAN Notices, July 1985

for: customization (flexibility) and "event-driven" 
architectures ("actual" events OR "structuring of 
control-flow" ["pseudo" events])

45



"Callback" implementation
hand a callable over to "somebody"
the "somebody" may store it "somewhere"

a container, an attribute, whatever
or even just keep it as a local variable

and calls it "when appropriate"
when it needs some specific functionality 
(i.e., for customization)
or, when appropriate events "occur" (state 
changes, user actions, network or other 
I/O, timeouts, system events, ...) or "are 
made up" (structuring of control-flow)

46



Lazy-loading Callbacks
class LazyCallable(object):

  def __init__(self, name):
    self.n, self.f = name, None
  def __call__(self, *a, **k):
    if self.f is None:
      modn, funcn = self.n.rsplit('.', 1)
      if modn not in sys.modules:
        __import__(modn)
      self.f = getattr(sys.modules[modn],
                       funcn)
    self.f(*a, **k)

47



Customization

48



Customizing sort (by key)
mylist.sort(key=str.toupper)
handily, speedily embodies the DSU pattern:

def DSU_sort(mylist, key):
  aux = [ (key(v), j, v)
           for j, v in enumerate(mylist)]
  aux.sort()
  mylist[:] = [v for k, j, v in aux]
Note that a little "workaround" is needed wrt the 
usual "call a method on each object" OO idiom...

49



Events

50



Kinds of "Event" callbacks
Events "proper"...:

GUI frameworks (mouse, keyboard, ...)
Observer/Observable design pattern
asynchronous (event-driven) I/O (net &c)
"system-event" callbacks

Pseudo-events for "structuring" execution:
"event-driven" parsing (SAX &c)
"scheduled" callbacks (sched)
"concurrent" callbacks (threads &c)
timing and debugging (timeit, pdb, ...)

51



Events in GUI frameworks
the most classic of event-driven fields
e.g, consider Tkinter:
elementary callbacks e.g. for buttons:

b=Button(parent, text='boo!', command=...)
flexible, advanced callbacks and events:

wgt.bind(event, handler)
event: string describing the event (e.g. 
'<Enter>', '<Leave>', '<Key>', ...)
handler: callable taking Event argument 
(w. attributes .widget, .x, .y, .type, ...)

can also bind by class, all, root window...

52



The Observer DP

53

a "target object" lets you add "observers"
could be simple callables, or objects
object == "collection of callable"

when the target's state changes, it calls 
back to "let the observers know"
design choices: "general" observers 
(callbacks on ANY state change), "specific" 
observers (callbacks on SPECIFIC state 
changes; level of specificity may vary), 
"grouped" observers (objects with >1 
methods for kinds of state-change), ...



Callback issues
what arguments are to be used on the call?

no arguments: simplest, a bit "rough"
in Observer: pass as argument the target 
object whose state just changed

lets 1 callable observe several targets
or: a "description" of the state changes

saves "round-trips" to obtain them
other: identifier or description of event

but -- what about other arguments (related 
to the callable, not to the target/event)...?

54



Fixed args in callbacks 
functools.partial(callable, *a, **kw)

pre-bind any or all arguments
however, note the difference...:

x.setCbk(functools.partial(f, *a, **kw))
vs

x.setCbk(f, *a, **kw)
...having the set-callback itself accept (and 
pre-bind) arguments is a neater idiom
sombunall1 Python callback systems use it

55
1: Robert Anton Wilson



Callback "dispatching"
what if more than one callback is set for a 
single event (or, Observable target)?

remember and call the latest one only
simplest, roughest

or, remember and call them all
LIFO? FIFO? or...?
how do you _remove_ a callback?
can one callback "preempt" others?

can events (or state changes) be "grouped"?
use object w/methods instead of callable

56



Callbacks and Errors
are "errors" events like any others?
or are they best singled-out?
http://www.python.org/pycon/papers/deferex/
Twisted Matrix's "Deferred" pattern: one 
Deferred object holds...

N "chained" callbacks for "successes" +
M "chained" callbacks for "errors"
each callback is held WITH opt *a, **kw
plus, argument for "event / error 
identification" (or, result of previous 
callback along the appropriate "chain")

57



System-events callbacks
for various Python "system-events":

atexit.register(callable, *a, **k)
oldhandler = signal.signal(signum, callable)
sys.displayhook, sys.excepthook, 
sys.settrace(callable), sys.setprofile
(callable)

some extension modules do that, too...:
readline.set_startup_hook, 
set_pre_input_hook, set_completer

58



"Pseudo" events
"events" can be a nice way to structure 
execution (control) flow

so in some cases "we make them up" (!) 
just to allow even-driven callbacks in 
otherwise non-obvious situations;-)

parsing, scheduling, concurrency, timing, 
debugging, ...

59



Event-driven parsing
e.g. SAX for XML

"events" are start and end of tags
handlers are responsible for keeping stack 
or other structure as needed

often not necessary to keep all...!
at the other extreme: XML's DOM
somewhere in-between: "pull DOM"...

events as "stream" rather than callback
can "expand node" for DOMy subtrees

60



Scheduled callbacks
standard library module sched
s = sched.Sched(timefunc, delayfunc)

e.g, Sched(time.time, time.sleep)
evt = s.enter(delay, priority, callable, arg)

or s.enterabs(time, priority, callable, arg)
may s.cancel(evt) later

s.run() runs events until queue is empty (or 
an exception is raised in callable or 
delayfunc: it propagates but leaves s in 
stable state, s.run can be called again later)

61



"Concurrent" callbacks
threading.Thread(target=..,args=..,kwargs=..)

call backs to target(*args,**kwargs)
at the t.start() event [or later...!]
*in a separate thread* (the key point!-)

multiprocessing.Process
stackless: stacklet.tasklet(callable)

calls back according to setup
when tasklet active and front-of-queue
channels, reactivation, rescheduling

62



Timing and debugging
timeit.Timer(stmt, setup)

*string* arguments to compile & execute
a dynamic-language twist on callback!-)
"event" for callback:

setup: once, before anything else
stmt: many times, for timing

the pdb debugger module lets you use 
either strings or callables...:

pdb.run and .runeval: strings
pdb.runcall: callable, arguments

63



Structural Patterns
"Masquerading/Adaptation" subcategory:

Adapter: tweak an interface (both class and 
object variants exist)
Facade: simplify a subsystem's interface
...and many others I don't cover, such as:

Bridge: many implementations of an 
abstraction, many implementations of a 
functionality, no repetitive coding
Decorator: reuse+tweak w/o inheritance
Proxy: decouple from access/location

64



Adapter
client code γ requires a protocol C 
supplier code σ provides different protocol 
S (with a superset of C's functionality) 
adapter code α "sneaks in the middle": 

to γ, α is a supplier (produces protocol C) 
to σ, α is a client (consumes protocol S) 
"inside", α implements C (by means of 
appropriate calls to S on σ)

65

 
© 2004 AB Strakt 11

STRAKT

DP "Adapter"

! client code ! requires a certain protocol C

! supplier code " provides different protocol 
S (with a superset of C's functionality)

! adapter code # "sneaks in the middle":
• to !, # is supplier code (produces protocol C)

• to ", # is client code (consumes protocol S)

• "inside", # implements C (by means of calls to S on ")

("interface" vs "protocol": "syntax" vs "syntax 
+ semantics + pragmatics")



Toy-example Adapter
C requires method foobar(foo, bar)
S supplies method barfoo(bar, foo)
e.g., σ could be:
class Barfooer(object): 
    def barfoo(self, bar, foo):

...

66



Object Adapter
per-instance, with wrapping delegation:
class FoobarWrapper(object):
def __init__(self, wrappee):
self.w = wrappee

def foobar(self, foo, bar):
return self.w.barfoo(bar, foo)

foobarer=FoobarWrapper(barfooer)

67



Class Adapter (direct)
per-class, w/subclasing & self-delegation:
class Foobarer(Barfooer):
def foobar(self, foo, bar):
return self.barfoo(bar, foo)

foobarer=Foobarer(...w/ever...)

68



Class Adapter (mixin)
flexible, good use of multiple inheritance:
class BF2FB:
def foobar(self, foo, bar):
return self.barfoo(bar, foo)

class Foobarer(BF2FB, Barfooer):
  pass

foobarer=Foobarer(...w/ever...)

69



Adapter KU
socket._fileobject: from sockets to file-like 
objects (w/much code for buffering)
doctest.DocTestSuite: adapts doctest tests 
to unittest.TestSuite
dbhash: adapt bsddb to dbm
StringIO: adapt str or unicode to file-like
shelve: adapt "limited dict" (str keys and 
values, basic methods) to complete mapping

via pickle for any <-> string
+ UserDict.DictMixin

70



Adapter observations 
some RL adapters may require much code
mixin classes are a great way to help adapt 
to rich protocols (implement advanced 
methods on top of fundamental ones)
Adapter occurs at all levels of complexity
in Python, it's _not_ just about classes and 
their instances (by a long shot!-) -- often 
_callables_ are adapted (via decorators and 
other HOFs, closures, functools, ...)

71



Facade vs Adapter
Adapter's about supplying a given protocol 
required by client-code

or, gain polymorphism via homogeneity
Facade is about simplifying a rich interface 
when just a subset is often needed
Facade most often "fronts" for a subsystem 
made up of many classes/objects, Adapter 
"front" for just one single object or class

72



Behavioral Patterns
Template Method: self-delegation

..."the essence of OOP"...
some of its many Python-specific variants

73



Template Method 
great pattern, lousy name

"template" very overloaded
generic programming in C++
generation of document from skeleton
...

a better name: self-delegation
directly descriptive!-)

74



Classic TM
abstract base class offers "organizing 
method" which calls "hook methods"
in ABC, hook methods stay abstract
concrete subclasses implement the hooks
client code calls organizing method

on some reference to ABC (injecter, or...)
which of course refers to a concrete SC

75



TM skeleton
class AbstractBase(object):
def orgMethod(self):
self.doThis()
self.doThat()

class Concrete(AbstractBase):
def doThis(self): ...
def doThat(self): ...

76



KU: cmd.Cmd.cmdloop
def cmdloop(self): 
  self.preloop() 
  while True: 
    s = self.doinput() 
    s = self.precmd(s) 
    finis = self.docmd(s) 
    finis = self.postcmd(finis,s) 
    if finis: break 
  self.postloop()

77



Classic TM Rationale
the "organizing method" provides 
"structural logic" (sequencing &c)
the "hook methods" perform "actual 
``elementary'' actions"
it's an often-appropriate factorization of 
commonality and variation

focuses on objects' (classes') 
responsibilities and collaborations: base 
class calls hooks, subclass supplies them
applies the "Hollywood Principle": "don't 
call us, we'll call you"

78



A choice for hooks 
class TheBase(object):
  def doThis(self):
    # provide a default (often a no-op)
    pass
  def doThat(self):
    # or, force subclass to implement
    # (might also just be missing...)
    raise NotImplementedError

Default implementations often handier, when 
sensible; but "mandatory" may be good docs.

79



class Queue:
...
def put(self, item):
self.not_full.acquire()
try:
while self._full():
self.not_full.wait()

self._put(item)
self.not_empty.notify()

finally:
self.not_full.release()

def _put(self, item): ...

KU: Queue.Queue

80



Queue’s TMDP
Not abstract, often used as-is

thus, implements all hook-methods
subclass can customize queueing discipline

with no worry about locking, timing, ...
default discipline is simple, useful FIFO
can override hook methods (_init, _qsize, 
_empty, _full, _put, _get) AND...
...data (maxsize, queue), a Python special

81



class LifoQueueA(Queue):
def _put(self, item):
self.queue.appendleft(item)

class LifoQueueB(Queue):
def _init(self, maxsize):
self.maxsize = maxsize
self.queue = list()

def _get(self):
return self.queue.pop()

Customizing Queue

82



class PriorityQueue(Queue):
def _init(self, maxsize):
self.maxsize = maxsize
self.q = list()
self._n = 0

def put(self, priority, item):
  Queue.put(self, (priority, item))
def _put(self, (p,i)):
  self._n += 1
heapq.heappush(self.q, (p,self._n,i))

def _get(self):
  return heapq.heappop(self.q)[-1]

A Priority/FIFO Queue

83



"Factoring out" the hooks
"organizing method" in one class
"hook methods" in another
KU: HTML formatter vs writer
KU: SAX parser vs handler
adds one axis of variability/flexibility
shades towards the Strategy DP:

Strategy: 1 abstract class per decision 
point, independent concrete classes
Factored TM: abstract/concrete classes 
more "grouped"

84



TM + introspection
"organizing" class can snoop into "hook" 
class (maybe descendant) at runtime

find out what hook methods exist
dispatch appropriately (including "catch-
all" and/or other error-handling)

very handy for event-driven programming 
when you can't (or do not want to…!) 
"predict" all possible events in the ABC 
(e.g., event-driven parsing of HTML or XML)

85



KU: cmd.Cmd.docmd
def docmd(self, cmd, a):
  ...
  try:
    fn = getattr(self, 'do_' + cmd)
  except AttributeError:
    return self.dodefault(cmd, a)
  return fn(a)

86



A multi-style TM case
classic + factored + introspective

multiple "axes" to separate three 
carefully distinguished "variabilities"

DP equivalent of a "3-Subjects Fugue"
"all arts aspires to the condition of 
Music" (Pater, Pound, Santayana...?-)

87



UC: unittest.TestCase
def__call__(self, result): 
  method = getattr(self, ...) 
  try: self.setUp() 
  except: result.addError(...) 
  try: method() 
  except self.failException, e:... 
  try: self.tearDown() 
  except: result.addError(...) 
  ...result.addSuccess(...)...

88



KU: ABCs
Simple example, collections.Sequence:

class Sequence(Sized,Iterable,Container):
  def count(self, value):
    the_count = 0
    for item in self:
      if item == value:
        the_count += 1
    return the_count
  ...

See also module abc.
89



Questions & Answers

90

Q?
A!

http://www.aleax.it/europ11_pydp.pdf



91

1.Design Patterns: Elements of Reusable Object-Oriented Software -- 
Gamma, Helms, Johnson, Vlissides -- advanced, very deep, THE classic  
"Gang of 4" book that started it all (C++)
2.Head First Design Patterns -- Freeman -- introductory, fast-paced, 
very hands-on (Java)
3.Design Patterns Explained -- Shalloway, Trott -- introductory, mix 
of examples, reasoning and explanation (Java)
4.The Design Patterns Smalltalk Companion -- Alpert, Brown, Woolf 
-- intermediate, very language-specific (Smalltalk)
5.Agile Software Development, Principles, Patterns and Practices -- 
Martin -- intermediate, extremely practical, great mix of theory and 
practice (Java, C++)
6.Refactoring to Patterns -- Kerievsky -- introductory, strong 
emphasis on refactoring existing code (Java)
7.Pattern Hatching, Design Patterns Applied -- Vlissides -- advanced, 
anecdotal, specific applications of ideas from the Gof4 book (C++)
8.Modern C++ Design: Generic Programming and Design Patterns 
Applied -- Alexandrescu -- advanced, very language specific (C++)


