Practical Python Patterns

Alex Martelli (aleax@google.com)

http://www.aleax.it/europll_pydp.pdf

The "levels" of this talk

Shu
("Retain")

("Transcend")

A Pattern Example

@ "Forces': a rich, Client lasses [~
complex system offers a
lot of functionality;
client code interacts §
with many parts of this |

functionality in a way
that's "out of control"

@ this causes many Subsystem casses
problems for client-code
programmers AND the
system's ones too

(complexity + rigidity)

3

Solution: the "Facade" DP

@ inferpose a simpler
"Facade" object/class
exposing a controlled
subset of functionality

@ client code now calls
into the Facade, only

@ the Facade implements
its simpler functionality
via calls into the rich,
complex subsystem

@ subsystem implementers Hirmmm
gains flexibility, clients gain simplicity

4

Facade is a Design Pattern

@ summary of a frequent design problem +
structure of a solution to that problem (+
pros and cons, alternatives, ...), and:

@ A NAME (much easier to retain/discuss!)

@ "descriptions of communicating objects and

classes customized to solve a %gneral design
problem in a particular contex

o that's NOT: a data structure, an algorithm,
a domain-specific system architectdre, a
programming-language/library feature

@ MUST be studied in a specific context!
@ BEST: give Known Uses ("KU"), "stars"

5

Some Facade KUs

@ ...in the Python standard library...:
@ dbhash facades for bsddb
@ highly simplified/subset access

@ also meets the "dbm" interface (thus,
also an example of the Adapter DP)

@ os.path: basename, dirname facade for
split + indexing; isdir (&c) facade for
os.stat + stat.S_ISDIR (&c)

@ Facade is a structural DP (we'll see another,
Adapter, later; in dbhash, they "merge"!-)

Is Facade a "Pythonic” DP?

@ yes... and no
@ it works just fine in Python, but...
@ ...it works just as well most everywhere!
@ i.e., it is, rather, a "universal" DP

@ points to ponder/debate...:

@ is it "Facade" if it offers all functionality?
o is it "Facade" if it _adds_ functionality?
@ do taxonomies ever work fully?-)
@ do other DPs/idioms "go well with it"?
@ "above"? "below"? "to the side"?

7

Design Patterns

What's a Design Pattern

@ summary of a frequent design problem +
structure of a solution to that problem +
pros and cons, alternatives, ..., and:

@ A NAME (much easier to retain/discuss!)

@ "descriptions of communicating objects and

classes customized to solve a %gneral design
problem in a particular contex

@ DPs are NOT: data structures, algorithms,
domain-specific system architectures,
programming language features

@ MUST be studied in a language's context!
@ Best: supply Known Uses ("KU") & "stars”

9

Step back: what's a Pattern?

@ identify a closely related class of problems
@ if there is no problem, why solve it?-)

@ identify a class of solutions to the problems
@ closely related, just like the problems are
@ may exist in any one of many different

possible scales ("phases of work")
@ just like the problems do

@ Design patterns are exactly those patterns
whose scale/phase is... design!

A Pattern's "problem(s)"

@ each Pattern addresses a problem
@ rather, a closely related class of problems
@ a problem is defined by:
@ "forces"
@ constraints, desiderata, side effects, ...

o "context" (including: what technologies
can be deployed to solve the problem)

A Pattern's "solution(s)"

@ to write-up a pattern, you must identify
class of solutions to the problems

o within the context (technologies, &c)
@ meaningful name and summary
@ a "middling-abstraction” description

@ real-world examples (if any!-), "stars"
@ one-star == "0/1 existing examples"

@ rationale, "quality without a name"

@ how it balances forces / +'s & issues

@ pointers to related/alternative patterns

12

Why bother w/Patterns?

@ identifying patterns helps all practitioners
of a field "up their game"...

@ ..towards the practices of the very best
ones in the field

@ precious in teaching, training, self-study

@ precious in concise communication, esp. in
multi-disciplinary cooperating groups

@ also useful in enhancing productivity
@ to recognize is faster than to invent
@ structured description helps recognition

"Design” is a vague term...

@ most generically, it can mean "purpose”

@ or specifically, a plan fowards a purpose

@ a geometrical or graphical arrangement

@ an "arrangement” in a more abstract sense
o ..

@ in saying "Design Patterns”, we mean
"design” in the sense common to buildings
architecture and SW development:

@ work phase "between" study/analysis and
"actual building" (not temporally;-)

@ (SWers use "architecture" differently;-)

14

Other kinds of Patterns

@ Analysis: find/identify value-opportunities

@ Architecture: large-scale overall-system
approaches to let subsystems cooperate

@ Human Experience: focus on how a system
presents itself and interacts with people

@ Testing: how best to verify system quality
@ Cooperation: how to help people work
together productively to deliver value

o Delivery/Deployment: how to put the
system in place (& adjust it iteratively)

..

What's a "Pythonic” Pattern?

@ a Design Pattern arising in contexts where
(part of) the technology in use is Python

o well-adapted to Python's strengths, if and
when those strengths are useful

@ dealing with Python-specific issues, if any

@ basically, all the rest of this talk!

- Many Good DP Books

Desilée;dPP;ﬁtems DESIGN PATTERNS Modern C2-+-Design

Comaric Pro 1
ot Derspe Potserm Appied

EXPLAINED M purrons T eromricne
Py PATTERN HATCHING

Andrel Alexandrescu

Design Patterns Applied ey

-

DesignPattemS .
Setbmarvioe [DEION PATTERNS RTIITRTITH
ich Gamna 2 ‘ “[V[““]MHH R EFACTORING

1O PATTERNS

Classic (Gof4) DP Categories

@ Creational: ways and means of object
instantiation

@ Structural: mutual composition of classes or
objects (the Facade DP is Structural)

@ Behavioral: how classes or objects interact

and distribute responsibilities among them
@ Each can be class-level or object-level

Prolegomena fto DPs

@ "program to an interface, not to an
implementation”

o that's mostly done with "duck typing" in
Python -- rarely w/"formal" interfaces

@ in 2.6+, ABCs can change that a bit!

@ pretty similar o "signature-based
polymorphism" in C++ templates

Duck Typing Helps!

Teaching the ducks to type fakes a while,
but saves you a lot of work afterwards!-)

20

Prolegomena fto DPs

@ "favor object composition over class
inheritance”

@ in Python: hold, or wrap
@ inherit only when it's really convenient
@ expose all methods in base class (reuse

+ usually override + maybe extend)
@ but, it's a very strong coupling!
@ 2.6+ ABCs can help with this, too

e
Q.
o
2
o

A
o

4 o
-
o

i

T
P

Q

Python: hold or wrap?
@ “Hold”: object O has subobject S as an
attribute (maybe property) -- that’s all
@ use self.S.method or O.S.method

@ simple, direct, immediate, but... pretty
strong coupling, often on the wrong axis

_’
—————— =
-
1
\
\
|

Python: hold or wrap?
@ “"Wrap”: hold (often via private name) plus
delegation (so you directly use O.method)
@ explicit (def method(self...)...self.S.method)
@ automatic (delegation in __getattr__)

@ gets coupling right (Law of Demeter)

E.g: wrap to "restrict”

class RestrictingWrapper(object):
def __init__(self, w, block):
self. w=w
self._block = block
def __getattr__(self, n):

1f n in self._block:
raise AttributeError, n
return getattr(self._w, n)

Inheritance cannot restrict!

25

Creational Patterns

Creational DPs: "Just One"

@ "we want just one instance to exist"
@ use a module instead of a class
@ no subclassing, no special methods, ...
@ make just 1 instance (no enforcement)
@ need to commit to "when" to make it

o singleton ("highlander™)

@ subclassing can never be really smooth
@ monostate ("borg")

@ Guido dislikes it

Singleton (“Highlander")

class Singleton(object):
def _ .new.-(cls, *a, **K):
1f not hasattr(cls, '_inst'):
cls._inst = super(Singleton, cls
Y.__new(cls, *a, **Kk)

return cls._inst
subclassing is always a problem, though:

class Foo(Singleton): pass
class Bar(Foo): pass

f = Foo(); b = Bar(Q); #
problem is intrinsic to Singleton

28

Monostate ("Borg")

class Borg(object):
_shared_state = {}
def __newa _(cls, *a, **k):
obj = super(Borg, cls
).__new__(cls, *a, **Kk)

obj.__dict__ = cls._shared_state
return obj

subclassing is no problem, just do...:

class Foo(Borg): pass
class Bar(Foo): pass
class Baz(Foo): _shared_state = {}

data overriding to the rescue!

29

Creational DPs: "Flexibility"

"we don't want fo commit fo instantiating a
specific concrete class”

o "Dependency Injection" DP
@ no creation except "outside"
@ what if multiple creations are needed?

@ "Factory" subcategory of DPs
@ may create w/ever or reuse existing
@ factory functions (& other callables)
@ factory methods (overridable)
@ factory classes (abstract & not)

30

DI: why we want it

class Scheduler(object):
def __init__(self):
self.1 = itertools.count().next
self.q = somemodule.PriorityQueue()
def AddEvent(self, when, c, *a, **k):

self.q.push((when, self.1i(), c, a, k))
def Run(self):
while self.q:
when, n, ¢, a, k = self.q.pop()
time.sleep(when - time.time())
c(*a, **k)

Side note...:

class PriorityQueue(object):
def __init__(self):
self.1 = [}
def __len__(self):
return len(self.l)

def push(self, obj):
heapq.heappush(self.1l, obj)
def pop(self):
return heapqg.heappop(self.1l)

Fine, but...

@ ..how to test Scheduler without long waits?

@ ...how to integrate it with other subsystems'
event loops, simulations, ...?

Core issue: Scheduler "concretely depends"
on concrete objects (time.sleep, time.time).

Possible solutions:
1. Template Method (Structural, see later)
2. "Monkey Patching” (idiom)
3. Dependency Injection

Template Method vs DI

See later, but, a summary:

when, n, c, a, k = self.q.pop()
self.WaitFor(when)
cC*a,)

def WaitFor(self, when):
time.sleep(when - time.time())

To customize: subclass, override WaitFor

TM-vs-DI example

class sq(ss):
def __init__(self):
sS.__lnitE®eiCsel)
ss.mtq = Queue.Queue()
def WaitFor(self, when):
try:

while when>time.time():
c, a, k = self.mtq.get(true,
time.time() - when)
c(*a; **k)
except Queue.Empty:
return

TM-vs-DI issues

@ inheritance — strong, inflexible coupling
@ per-class complex, specialized extra logic
@ not ideal for testing

@ if another subsystem makes a scheduler,
how does it know to make a test-

scheduler instance vs a simple one?

@ multiple integrations even harder than need
be (but, there's no magic bullet for those!-)

Monkey-patching...

import ss

class faker(object): pass
fake = faker()

ss.time = fake

fake.sleep = ...

fake .times=i =

@ handy in emergencies, but...
@ ..easily abused for NON-emergencies!
@ "gives dynamic languages a bad name"!-)
@D subtle, hidden "communication"” via secret,
obscure pathways (explicit is better!-)

37

Dependency Injection

class Scheduler(object):
def __init__(self, tm=time.time,
sl=time.sleep):
self.tm = tm
self.sl sl

self.sl(when - self.tm())

@ a known use: standard library sched module!

With DI, "faking” is easy

class faketime(object):
def __init__(self, t=0.0): self.t = t
def time(self): return self.t
def sleep(self, t): self.t += t

= faketime()
= Scheduler(f.time, f.sleep)

DI/TM "coopetition”

Not mutually exclusive...:

class Scheduler(object):
def __init__(self, tm=time.time,
sl=time.sleep):
. # move key operation to a method:

def WaitFor(self, when):
self.sl(when-self.tm())

then may use either injection, or subclassing and
overriding, (or both!-), for testing, integration, &c

DI design-choice details

o inject by constructor (as shown before)
@ with, or without, default dep. values?
@ ensure just-made instance is consistent
@ choose how '"visible" to make the inject...
@ inject by setter

@ automatic in Python (use non-_ names)
o very flexible (sometimes too much;-)

@ "inject by interface” (AKA "IoC type 1")
@ not very relevant to Python

o DI: by code or by config-file/flags?

41

DI and factories
class ts(object):

def Delegate(self, c, a, k):

g = Queue.Queue()
def f(): qg.put(c(*a,**k))

t = threading.Thread(target=f)
t.start(Q)
return q
@ each call to Delegate needs a new Queue and a
new Thread; how do we DI these objects...?
@ easy solution: inject factories for them!

42

DI and factories

class ts(object):
def __init__(self, g=Queue.Queue,
t=threading.Thread):

self.q = ¢
t

self.t =

def Delegate(self, c, a, k):
q = self.qO

t = self.t(target=f)
@ pretty obvious/trivial solution when each class is
a factory for its instances, of course;-)

The Callback Pattern

@ AKA "the Hollywood Principle”...:
@ "Don't call us, we'll call you!"

— e w
e e e
‘L e S L

’ Syl o R T " e\ []

| S IT O > B AT b P 178

L et
S i

—

LY WO

The "Callback” concept

o it's all about library/framework code that
"calls back" into YOUR code

o rather than the "traditional” (procedural)
approach where YOU call code supplied as
entry points by libraries &c

@ AKA, the "Hollywood principle":

@ "don't call us, we'll call you"
@ by: Richard E. Sweet, in "The Mesa Programming
Environment", SigPLAN Notices, July 1985
@ for: customization (flexibility) and “event-driven"
architectures ("actual” events OR “structuring of
control-flow" ["pseudo” events])

45

"Callback” implementation

@ hand a callable over to "somebody"
@ the "somebody" may store it "somewhere"
® a container, an attribute, whatever
@ or even just Keep it as a local variable
o and calls it "when appropriate”

@ when it needs some specific functionality
(i.e., for customization)

@ or, when appropriate events “"occur” (state
changes, user actions, network or other
1/0, timeouts, system events, ...) or "are
made up" (structuring of control-flow)

46

Lazy-loading Callbacks

class LazyCallable(object):
def __init__(self, name):
self.n, self.f = name, None
def __caldi (Sel faentg, TEK):
1f self.f is None:
modn, funah:="self.n.rSPiLtC" . /' 19
1f modn not in sys.modules:
__1import__(modn)
self.f = getattr(sys.modules[modn],
funcn)
self . f(*a, ** k3

47

Customization

Customizing sort (by key)

mylist.sort(key=str.toupper)

handily, speedily embodies the DSU pattern:

def DSU_sort(mylist, key):
aux = I: (kech), ja V)
for j, v in enumerate(mylist)]
aux.sort()
mylist[:] = [¥ ok, g, "V 1h aux]
Note that a little "workaround" is needed wrt the
usual "call a method on each object" OO idiom...

Events
e

Kinds of "Event" callbacks

@ Events "proper”...:
@ GUI frameworks (mouse, keyboard, ...)
@ Observer/Observable design pattern
@ asynchronous (event-driven) I/0 (net &c)
o "system-event" callbacks

@ Pseudo-events for "structuring” execution:
@ "event-driven" parsing (SAX &c)
@ "scheduled" callbacks (sched)
@ "concurrent” callbacks (threads &c)
@ timing and debugging (timeit, pdb, ...)

51

Events in GUI frameworks

@ the most classic of event-driven fields
@ e.g, consider Tkinter:
@ elementary callbacks e.g. for buttons:
@ b=Button(parent, text='boo!', command-=...)
@ flexible, advanced callbacks and events:

o wgt.bind(event, handler)

@ event: string describing the event (e.g.
'<Enter>', <Ceave>', '<Key>', ..

@ handler: callable faking Event argument
(w. attributes .widget, °x, vy, .type, ..)

@ can also bind by class, all, root window...

The Observer DP

@ a "target object" lets you add "observers"
@ could be simple callables, or objects
@ object == "collection of callable"

o when the target's state changes, it calls
back to "let the observers know"

@ design choices: "general” observers
(callbacks on ANY state change), "specific”
observers (callbacks on SPECIFIC state
changes; level of specificity may vary),
"grouped"” observers (objects with >1
methods for kinds of state-change), ...

53

Callback issues

@ what arguments are to be used on the call?
@ no arguments: simplest, a bit "rough"

@ in Observer: pass as argument the target
object whose state just changed

@ lets 1 callable observe several targets

o or: a "description” of the state changes
@ saves "round-trips" to obtain them
@ other: identifier or description of event

@ but -- what about other arguments (related
to the callable, not to the target/event)...?

Fixed args in callbacks

@ functools.partial(callable, *a, **kw)
@ pre-bind any or all arguments
@ however, note the difference...:

o x.setCbk(functools.partial(f, *a, **kw))
o VS

o x.setCbk(f, *a, **kw)

@ ..having the set-callback itself accept (and
pre-bind) arguments is a neater idiom

@ sombunall! Python callback systems use it

. Robert Anton Wilson

Callback "dispatching”

@ what if more than one callback is set for a
single event (or, Observable target)?

@ remember and call the latest one only
@ simplest, roughest
@ or, remember and call them all

@ LIFO? FIFO? or...?
@ how do you _remove_ a callback?
@ can one callback "preempt” others?
@ can events (or state changes) be "grouped”?
@ use object w/methods instead of callable

56

Callbacks and Errors

@ are "errors" events like any others?

@ or are they best singled-out?
http://www.python.org/pycon/papers/deferex/

o Twisted Matrix's "Deferred” pattern: one

Deferred object holds...

@ N "chained" callbacks for "successes" +
@ M "chained" callbacks for "errors"

@ each callback is held WITH opt *a, **kw

o plus, argument for "event / error
identification” (or, result of previous
callback along the appropriate “chain")

5/

System-events callbacks

@ for various Python "system-events":
o atexit.register(callable, *a, **k)
@ oldhandler = signal.signal(signum, callable)

@ sys.displayhook, sys.excepthook,
sys.settrace(callable), sys.setprofile

(callable)
@ some extension modules do that, too...:

@ readline.set_startup_hook,
set_pre_input_hook, sef_completer

"Pseudo’ events

@ "events" can be a nice way to structure
execution (control) flow

@ S0 in some cases "we make them up" (!)
just to allow even-driven callbacks in
otherwise non-obvious situations;-)

@ parsing, scheduling, concurrency, timing,
debugging, ...

Event-driven parsing

@ e.g. SAX for XML
@ "events" are start and end of tags

@ handlers are responsible for keeping stack
or other structure as needed

@ often not necessary to keep all...!

@ at the other extreme: XML's DOM

@ somewhere in-between: "pull DOM"...
@ events as "stream” rather than callback
@ can "expand node" for DOMy subtrees

Scheduled callbacks

@ standard library module sched

@ s = sched.Sched(timefunc, delayfunc)
@ e.g, Sched(time.time, time.sleep)

@ evt = s.enter(delay, priority, callable, arg)
@ or s.enterabs(time, priority, callable, arg)

@ may s.cancel(evt) later

@ s.run() runs events until queue is empty (or
an exception is raised in callable or
delayfunc: it propagates but leaves s in
stable state, s.run can be called again later)

"Concurrent” callbacks

@ threading.Thread(target=..,args=.. kwargs=..)
o call backs to target(*args,**kwargs)
@ at the t.start() event [or later...!]
@ *in a separate thread* (the key point!-)
@ multiprocessing.Process

o stackless: stacklet.tasklet(callable)
@ calls back according to setup
@ when tasklet active and front-of-queue
@ channels, reactivation, rescheduling

Timing and debugging

@ timeit.Timer(stmt, setup)
@ *string® arguments to compile & execute
@ a dynamic-language twist on callback!-)
o "event" for callback:
@ setup: once, before anything else

@ stmt: many times, for timing

@ the pdb debugger module lets you use
either strings or callables...:

@ pdb.run and .runeval: strings
@ pdb.runcall: callable, arguments

63

Structural Patterns

"Masquerading/Adaptation” subcategory:

@ Adapter: tweak an interface (both class and
object variants exist)

@ Facade: simplify a subsystem's interface
@ ..and many others I don't cover, such as:

@ Bridge: many implementations of an
abstraction, many implementations of a
functionality, no repetitive coding

@ Decorator: reuse+tweak w/o inheritance
@ Proxy: decouple from access/location

Adapter

@ client code Y requires a protocol C

@ supplier code T provides different protocol
S (with a superset of C's functionality)

@ adapter code & "sneaks in the middle":

o to y, & is a supplier (produces protocol C)

o to 0, ot is a client (consumes protocol S)

@ "inside", o implements C (by means of
appropriate calls to S on O)

Toy-example Adapter

@ C requires method foobar(foo, bar)
@ S supplies method barfoo(bar, foo)
@ e.g., O could be:

class Barfooer(object):

def barfoo(self, bar, foo):

Object Adapter

@ per-instance, with wrapping delegation:
class FoobarWrapper(object):
def __init__(self, wrappee):
self.w = wrappee
def foobar(self, foo, bar):

return self.w.barfoo(bar, foo)

foobarer=FoobarWrapper(barfooer)

Class Adapter (direct)

@ per-class, w/subclasing & self-delegation:
class Foobarer(Barfooer):
def foobar(self, foo, bar):

return self.barfoo(bar, foo)

foobarer=Foobarer(...w/ever...)

Class Adapter (mixin)

@ flexible, good use of multiple inheritance:
class BFZ2FB:

def foobar(self, foo, bar):
return self.barfoo(bar, foo)

class Foobarer(BF2FB, Barfooer):
pass

foobarer=Foobarer(...w/ever...)

Adapter KU

@ socket.__fileobject: from sockets to file-like
objects (w/much code for buffering)

@ doctest.DocTestSuite: adapts doctest tests
to unittest.TestSuite

@ dbhash: adapt bsddb to dbm

@ StringlO: adap’r str or unicode to file-like

@ shelve: adapt "limited dict" (str keys and
values, basic methods) to complete mapping

@ via pickle for any <-> string
@ + UserDict.DictMixin

Adapter observations

@ some RL adapters may require much code

@ mixin classes are a great way to help adapt
to rich protocols (implement advanced
methods on top of fundamental ones)

o Adapter occurs at all levels of complexity

@ in Python, it's _not_ just about classes and
their instances (by a long shot!-) -- often
callables are adapted (via decorators and
other HOFs, closures, functools, ...)

Facade vs Adapter

@ Adapter's about supplying a given protocol
required by client-code

@ or, gain polymorphism via homogeneity
@ Facade is about simplifying a rich interface

when just a subset is often needed

@ Facade most often "fronts" for a subsystem
made up of many classes/objects, Adapter
"front" for just one single object or class

Behavioral Patterns

@ Template Method: self-delegation
@ ..."the essence of OOP"...
@ some of its many Python-specific variants

This certifies that

(name)

is hereby vecognised for demonstration of
Good Behabvior

at (school)

atvarded (date)

Template Method

@ great pattern, lousy name
@ "template” very overloaded
@ generic programming in C++
@ generation of document from skeleton
3 ..

@ a better name: self-delegation
o directly descriptive!-)

Classic TM

@ abstract base class offers "organizing
method" which calls "hook methods"

@ in ABC, hook methods stay abstract
@ concrete subclasses implement the hooks
@ client code calls organizing method

@ on some reference to ABC (injecter, or..)
@ which of course refers to a concrete SC

TM skeleton

class AbstractBase(object):
def orgMethod(self):
self.doThis()
self.doThat()

class Concrete(AbstractBase):
def doThis(self):
def doThat(self):

KU: cmd.Cmd.cmdloop

def cmdloop(self):
self.preloop()
while True:
s = self.doinput()

s = self.precmd(s)

finis = self.docmd(s)

finis = self.postcmd(finis,s)

1f finis: break
self.postloop()

it

Classic TM Rationale

@ the "organizing method" provides
"structural logic" (sequencing &c)

o the "hook methods" PerForm "actual
“elementary" actions”

@ it's an often-appropriate factorization of

commonality and variation

@ focuses on objects' (classes')
responsibilities and collaborations: base
class calls hooks, subclass supplies them

@ applies the "Hollywood Principle”: "don't
call us, we'll call you"

78

A choice for hooks

class TheBase(object):

def doThis(self):
provide a default (often a no-op)
pass

def doThat(self):
or, force subclass to implement
(might also just be missing...)
raise NotImplementedError

Default implementations often handier, when
sensible; but "mandatory” may be good docs.

79

KU: Queue.Queue

class Queue:

def put(self, item):
self.not_full.acquire()
try:
while self._full():
self.not_full.wait()
self._put(item)
self.not_empty.notify()
finally:
self.not_full.release()
def _put(self, item):

80

Queues TMDP

@ Not abstract, often used as-is
@ thus, implements all hook-methods

@ subclass can customize queueing discipline
@ with no worry about locking, timing, ...
@ default discipline is simple, useful FIFO

@ can override hook methods (_init, _gsize,
_empty, _full, _put, _get) AND...

o ..data (maxsize, queue), a Python special

Customizing Queue

class LifoQueueA(Queue):
def _put(self, item):
self.queue.appendleft(item)

class LifoQueueB(Queue):

def _init(self, maxsize):
self.maxsize = maxsize
self.queue = list()

def _get(self):
return self.queue.pop()

A Priority/FIFO Queue

class PriorityQueue(Queue):
def _init(self, maxsize):
self.maxsize = maxsize
self.q = list(O)
self._.n =0

def put(self, priority, item):

Queue.put(self, (priority, item))
def _put(self, (p,1)):

self. . n +=1

heapq.heappush(self.q, (p,self._n,1))
def _get(self):

return heapq.heappop(self.q)[-1]

"Factoring out” the hooks

@ "organizing method" in one class

@ "hook methods" in another

@ KU: HTML formatter vs writer

@ KU: SAX parser vs handler

@ adds one axis of variability/flexibility

@ shades towards the Strategy DP:

@ Strategy: 1 abstract class per decision
point, independent concrete classes

@ Factored TM: abstract/concrete classes
more “grouped”

TM + introspection

@ "organizing” class can snoop into "hook™
class (maybe descendant) at runtime

@ find out what hook methods exist

o dispatch appropriately (including "catch-
all® and/or other error-handling)

@ very handy for event-driven programming
when you can't (or do not want to...!)
"predict” all possible events in the ABC
(e.g., event-driven parsing of HTML or XML)

KU: ecmd.Cmd.docmd

def docmd(self, cmd, a):
try:
fn = getattr(self, 'do_' + cmd)
except AttributeError:

return self.dodefault(cmd, a)
return fn(Ca)

A multi-style TM case

@ classic + factored +

@ multiple "axes" to separate three
carefully distinguished "variabilities"

@ DP equivalent of a "3-Subjects Fugue"
@ "all arts aspires to the condition of

Music" (Pater, Pound, Santayana...?-)

UC: unittest.TestCase

def__call__(self, result):
method = (selfv
try: self.setUp(Q)
except: result.addError(...)

try: @)

except self.failException, e:...
try: self.tearDown()

except: result.addError(...)

. ..result.addSugeessg. . =),

88

KU: ABCs

Simple example, collections.Sequence:

class Sequence(Sized,Iterable,Container):
def count(self, value):
the_count = 0
for item in self:
1f item == value:
the_count += 1
return the_count

See also module abc.

89

Questions & Answers
http://www.aleax.it/europll pydp.pdf

?

1.Design Patterns: Elements of Reusable Object-Oriented Software --
Gamma, Helms, Johnson, Vlissides -- advanced, very deep, THE classic
"Gang of 4" book that started it all (C++)

2.Head First Design Patterns -- Freeman -- introductory, fast-paced,
very hands-on (Java)

3.Design Patterns Explained -- Shalloway, Trott -- infroductory, mix
of examples, reasoning and explanation (Java)

4.The Design Patterns Smalltalk Companion -- Alpert, Brown, Woolf
-- intermediate, very language-specific (Smalltalk)

5.Agile Software Development, Principles, Patterns and Practices --
Martin -- intermediate, extremely practical, great mix of theory and
practice (Java, C++)

6.Refactoring to Patterns -- Kerievsky -- infroductory, strong
emphasis on refactoring existing code (Java)

7.Pattern Hatching, Design Patterns Applied -- Vlissides -- advanced,
anecdotal, specific applications of ideas from the Gof4 book (C++)

8.Modern C++ Design: Generic Programming and Design Patterns
Applied -- Alexandrescu -- advanced, very language specific (C++)

91

