Don't call us, we'll call you:
callback patterns and idioms in Python

http://www.aleax.it/cback_sfpl2.pdf

Audience levels for this talk

Shu i «—
("Retain")

("Detach")

<

("Transcend")
2

The "Callback” concept

8 it's about library/framework code that
"calls back" into YOUR code

@ rather than the "traditional” (procedural)
approach where YOU call code supplied as
entry points by libraries &c

don't call

@ AKA "the Hollywood principle™:
us, we'll call you"

@ coinage: Richard E. Sweet, in "The Mesa Programming
Environment"”, SigPLAN Notices, July 1985

@ for: customization (flexibility) and "event-driven"
architectures (“actual” events OR "structuring of
control-flow" ["pseudo” events])

€y ())

S

"Callback” implementation

@ hand a callable over to "somebody"
@ the "somebody" will store it "somewhere"
@ a container, an attribute, whatever
@ or even just Keep it as a local variable
@ and calls it "when appropriate”

@ when it needs some specific functionality
(i.e., for customization)

@ or, when appropriate events “occur” (state
changes, user actions, network or other
1/0, timeouts, system events, ...) or "are
made up" (structuring of control-flow)

iy (')‘,"

4

Customization

Customizing sort (by key)
mylist.sort(key=str.toupper)

handily, speedily embodies the DSU pattern:

def DSU_sort(mylist, key):
aux = I: (kech), j’ V)

for j, v in enumerate(mylist)]
aux.sort()
mylist[:] = [fork, 2, V in_ agux]

Note that a little "workaround" is needed wrt the
usual “call a method on each object” OO idiom...!
(? ())

6

More-0O0-ish callbacks

import operator

mylist.sort(key=operator.attrgetter('k'))

mylist.sort(key=cls.argless_method)

mylist.sort(key=operator.methodcaller(
"methodname', 'maybe', 'some', 'args'))

Key point: don't Llambda needlessly!

OO customizing: the TM DP

@ "Template Method" Design Pattern: perform
the callbacks by "self delegation":
class TMparent(object):

...self.somehook()...
@ and customize by inheriting & overriding:

class TMchild(TMparent):
...def somehook(self):...
@ handy, compact, sometimes a bit rigid

@ http://video.google.com/videoplay?
docid=-5434189201555650834 and http://

www.dleax.it/goo_pydp.pdf (49ff) for more
(35 ()

8

Customizing scheduling

@ sched needs TWO callback functionalities:

@ what time is it right now?
@ wait (sleep) until time T

@ the OO way (more structured) would be:
import time

s=sched(time)
@ the FP way (more flexible) is instead:
s=sched(time.time, time.sleep)
@ you might supply default callbacks, or not
@ (Dependency Injection DP & variants)

&)

Kinds of "Event" callbacks

@ Events "proper”...:
@ GUI frameworks (mouse, keyboard, ...)
@ Observer/Observable design pattern
@ asynchronous (event-driven) I/0 (net &c)
@ "system-event” callbacks

@ Pseudo-events for “structuring” execution:
@ "event-driven” parsing (SAX &c)
@ "scheduled" callbacks (sched)
@ "concurrent” callbacks (threads &c)
@ timing and debugging (timeit, pdb, ...)

11

Events in GUI frameworks

@ the most classic of event-driven fields
@ e.g, consider Tkinter:
@ elementary callbacks e.g. for buttons:
@ b=Button(parent, text='boo!', command=...)
o flexible, advanced callbacks and events:

@ somewidget.bind(event, handler)

@ event: string describing the event (e.g.
'Enter>’', '<Ceave>’, '<Keys', ...)

@ handler: callable taking Event argument
(w. attributes .widget, "x, vy, .type, ..)

@ can also bind by class, all, root window...

€y ())

The Observer DP

@ a "target object" lets you add "observers"
@ could be simple callables, or objects

@ when the target's state changes, it calls
back to "let the observers know"

@ design choices: "general” observers

(callbacks on ANY state change), "specific"
observers (callbacks on SPECIFIC state
changes; level of specificity may vary),
"grouped" observers (objects with >1
methods for kinds of state-change), ...

Callback issues

@ what arguments are to be used on the call?
@ no arguments: simplest, a bit "rough”

@ in Observer: pass as argument the target
object whose state just changed

@ lets 1 callable observe several targets

@ or: a "description” of the state changes
@ saves "round-trips" to obtain them
@ other: identifier or description of event

@ but -- what about other arguments (related
to the callable, not to the target/event)...?

€y ())

Fixed args in callbacks

o functools.partial(callable, *a, **kw)
@ pre-bind any or all arguments
@ however, note the difference...:
@ x.setCbk(functools.partial(f, *a, **kw))
o Vs

o x.setCbk(f, *a, **kw)

@ ..having the set-callback itself accept (and
pre-bind) arguments is far neater/handier

@ sombunall! Python callback systems do that

1. Robert Anton Wilson

Callback "dispatching"”

@ what if more than one callback is set for a
single event (or, Observable target)?

@ remember and call the latest one only
@ simplest, roughest
@ or, remember and call them all
@ LIFO? FIFO? or..?
@ how do you _remove__ a callback?
@ can one callback "preempt” others?
@ can events (or state changes) be "grouped"?
@ use object w/methods instead of callable

€y ())

16

Callbacks and Errors

@ are "errors" events like any others?
@ or are they best singled-out?
http://www.python.org/pycon/papers/deferex/

o Twisted Matrix's "Deferred" pattern: one
Deferred object holds...

@ N "chained" callbacks for "successes" +
@ M "chained" callbacks for "errors"
@ each callback is held WITH opt *a, **kw

@ plus, argument for "event / error
identification” (or, result of previous
callback along the appropriate "chain")

€y ())
17 (

System-events callbacks

@ for various Python "system-events":
@ atexit.register(callable, *a, **k)
@ oldhandler = signal.signal(signum, callable)

@ sys.displayhook, sys.excepthook,
sys.settrace(callable),

sys.setprofile(callable)
@ some extension modules do that, too...:

@ readline.set_startup_hook,
set_pre_input_hook, set_completer

"Pseudo'’ events

@ "events" can be a nice way to structure
execution (control) flow

@ so in some cases "we make them up" (!)
just to allow even-driven callbacks in
otherwise non-obvious situations;-)

@ parsing, scheduling, concurrency, timing,
debugging, ...

Event-driven parsing

@ e.g. SAX for XML
@ "events" are start and end of tags

@ handlers are responsible for keeping stack
or other structure as needed

@ often not necessary to keep all...!

@ at the other extreme: XML's DOM

@ somewhere in-between: "pull DOM"...
@ events as "stream” rather than callback
@ can "expand node" for DOMy subtrees

Scheduled callbacks

@ standard library module sched
8 s = sched.Sched(timefunc, delayfunc)
@ e.g, Sched(time.time, time.sleep)
@ evt = s.enter(delay, priority, callable, arg)

@ or s.enterabs(time, priority, callable, arg)
@ may s.cancel(evt) later

@ s.run() runs events until queue is empty (or
an exception is raised in callable or
delayfunc: it propagates but leaves s in
stable state, s.run can be called again later)

€y ())

"Concurrent” callbacks

@ threading.Thread(target=..,args=.. kwargs=..)

@ call backs to target(*args,**kwargs)

@ at the t.start() event [or later...]

@ *in a separate thread” (the key point!-)
@ stacklet.tasklet(callable)

@ calls back according to setup

@ when fasklet active and front-of-queue

@ channels, reactivation, rescheduling
@ processing.Process(...like threading.Thread...)
@ NWS' sleigh: eachElem, eachWorker

€y ())

22

Timing and debugging

o timeit.Timer(stmt, setup)
@ *string® arguments to compile & execute
@ a dynamic-language twist on callback!-)
@ "event" for callback:
@ setup: once, before anything else

@ stmt: many times, for timing

@ the pdb debugger module lets you use
either strings or callables...:

@ pdb.run and .runeval: strings
@ pdb.runcall: callable, arguments

23

Q& A
http://www.aleax.1t/cback_sfplZ2.pdf

