
©2012 Google -- aleax@google.com

Don't call us, we'll call you:
callback patterns and idioms in Python

http://www.aleax.it/cback_sfp12.pdf

Audience levels for this talk

2

Shu

Ha

Ri

("Retain")

("Detach")

("Transcend")

The "Callback" concept
it's about library/framework code that
"calls back" into YOUR code

rather than the "traditional" (procedural)
approach where YOU call code supplied as
entry points by libraries &c

AKA "the Hollywood principle": "don't call
us, we'll call you"

coinage: Richard E. Sweet, in "The Mesa Programming
Environment", SigPLAN Notices, July 1985

for: customization (flexibility) and "event-driven"
architectures ("actual" events OR "structuring of
control-flow" ["pseudo" events])

3

"Callback" implementation
hand a callable over to "somebody"
the "somebody" will store it "somewhere"

a container, an attribute, whatever
or even just keep it as a local variable

and calls it "when appropriate"
when it needs some specific functionality
(i.e., for customization)
or, when appropriate events "occur" (state
changes, user actions, network or other
I/O, timeouts, system events, ...) or "are
made up" (structuring of control-flow)

4

Customization

5

Customizing sort (by key)
mylist.sort(key=str.toupper)
handily, speedily embodies the DSU pattern:

def DSU_sort(mylist, key):
 aux = [(key(v), j, v)
 for j, v in enumerate(mylist)]
 aux.sort()
 mylist[:] = [v for k, j, v in aux]

Note that a little "workaround" is needed wrt the
usual "call a method on each object" OO idiom...!

6

More-OO-ish callbacks
import operator

mylist.sort(key=operator.attrgetter('k'))

mylist.sort(key=cls.argless_method)

mylist.sort(key=operator.methodcaller(
 'methodname', 'maybe', 'some', 'args'))

Key point: don't lambda needlessly!

7

OO customizing: the TM DP
"Template Method" Design Pattern: perform
the callbacks by "self delegation":
class TMparent(object):
...self.somehook()...

and customize by inheriting & overriding:
class TMchild(TMparent):
...def somehook(self):...

handy, compact, sometimes a bit rigid
http://video.google.com/videoplay?
docid=-5434189201555650834 and http://
www.aleax.it/goo_pydp.pdf (49ff) for more

8

Customizing scheduling
sched needs TWO callback functionalities:

what time is it right now?
wait (sleep) until time T

the OO way (more structured) would be:
import time
s=sched(time)
the FP way (more flexible) is instead:
s=sched(time.time, time.sleep)
you might supply default callbacks, or not
(Dependency Injection DP & variants)

9

Events

10

Kinds of "Event" callbacks
Events "proper"...:

GUI frameworks (mouse, keyboard, ...)
Observer/Observable design pattern
asynchronous (event-driven) I/O (net &c)
"system-event" callbacks

Pseudo-events for "structuring" execution:
"event-driven" parsing (SAX &c)
"scheduled" callbacks (sched)
"concurrent" callbacks (threads &c)
timing and debugging (timeit, pdb, ...)

11

Events in GUI frameworks
the most classic of event-driven fields
e.g, consider Tkinter:
elementary callbacks e.g. for buttons:

b=Button(parent, text='boo!', command=...)
flexible, advanced callbacks and events:

somewidget.bind(event, handler)
event: string describing the event (e.g.
'<Enter>', '<Leave>', '<Key>', ...)
handler: callable taking Event argument
(w. attributes .widget, .x, .y, .type, ...)

can also bind by class, all, root window...

12

The Observer DP

13

a "target object" lets you add "observers"
could be simple callables, or objects

when the target's state changes, it calls
back to "let the observers know"
design choices: "general" observers
(callbacks on ANY state change), "specific"
observers (callbacks on SPECIFIC state
changes; level of specificity may vary),
"grouped" observers (objects with >1
methods for kinds of state-change), ...

Callback issues
what arguments are to be used on the call?

no arguments: simplest, a bit "rough"
in Observer: pass as argument the target
object whose state just changed

lets 1 callable observe several targets
or: a "description" of the state changes

saves "round-trips" to obtain them
other: identifier or description of event

but -- what about other arguments (related
to the callable, not to the target/event)...?

14

Fixed args in callbacks
functools.partial(callable, *a, **kw)

pre-bind any or all arguments
however, note the difference...:

x.setCbk(functools.partial(f, *a, **kw))
vs

x.setCbk(f, *a, **kw)
...having the set-callback itself accept (and
pre-bind) arguments is far neater/handier
sombunall1 Python callback systems do that

15
1: Robert Anton Wilson

Callback "dispatching"
what if more than one callback is set for a
single event (or, Observable target)?

remember and call the latest one only
simplest, roughest

or, remember and call them all
LIFO? FIFO? or...?
how do you _remove_ a callback?
can one callback "preempt" others?

can events (or state changes) be "grouped"?
use object w/methods instead of callable

16

Callbacks and Errors
are "errors" events like any others?
or are they best singled-out?
http://www.python.org/pycon/papers/deferex/
Twisted Matrix's "Deferred" pattern: one
Deferred object holds...

N "chained" callbacks for "successes" +
M "chained" callbacks for "errors"
each callback is held WITH opt *a, **kw
plus, argument for "event / error
identification" (or, result of previous
callback along the appropriate "chain")

17

System-events callbacks
for various Python "system-events":

atexit.register(callable, *a, **k)
oldhandler = signal.signal(signum, callable)
sys.displayhook, sys.excepthook,
sys.settrace(callable),
sys.setprofile(callable)

some extension modules do that, too...:
readline.set_startup_hook,
set_pre_input_hook, set_completer

18

"Pseudo" events
"events" can be a nice way to structure
execution (control) flow

so in some cases "we make them up" (!)
just to allow even-driven callbacks in
otherwise non-obvious situations;-)

parsing, scheduling, concurrency, timing,
debugging, ...

19

Event-driven parsing
e.g. SAX for XML

"events" are start and end of tags
handlers are responsible for keeping stack
or other structure as needed

often not necessary to keep all...!
at the other extreme: XML's DOM
somewhere in-between: "pull DOM"...

events as "stream" rather than callback
can "expand node" for DOMy subtrees

20

Scheduled callbacks
standard library module sched
s = sched.Sched(timefunc, delayfunc)

e.g, Sched(time.time, time.sleep)
evt = s.enter(delay, priority, callable, arg)

or s.enterabs(time, priority, callable, arg)
may s.cancel(evt) later

s.run() runs events until queue is empty (or
an exception is raised in callable or
delayfunc: it propagates but leaves s in
stable state, s.run can be called again later)

21

"Concurrent" callbacks
threading.Thread(target=..,args=..,kwargs=..)

call backs to target(*args,**kwargs)
at the t.start() event [or later...]
in a separate thread (the key point!-)

stacklet.tasklet(callable)
calls back according to setup
when tasklet active and front-of-queue
channels, reactivation, rescheduling

processing.Process(...like threading.Thread...)
NWS' sleigh: eachElem, eachWorker

22

Timing and debugging
timeit.Timer(stmt, setup)

string arguments to compile & execute
a dynamic-language twist on callback!-)
"event" for callback:

setup: once, before anything else
stmt: many times, for timing

the pdb debugger module lets you use
either strings or callables...:

pdb.run and .runeval: strings
pdb.runcall: callable, arguments

23

Q & A
http://www.aleax.it/cback_sfp12.pdf

24

? !

