
©2009 Google -- aleax@google.com

Highly Technical
Management "Lessons"

http://www.aleax.it/bayp_html.pdf

Alex Martelli

What Levels I Address

2

Shu

Ha

Ri

("Retain")

("Detach")

("Transcend")

This talk is NOT about...
strategic/executive management

business plan, finance, strategic vision...
project management

planning, scheduling, budgeting, ...
technologies/methods/tools/...

languages, operating systems, frameworks
I take for granted some level of "Agility":

neither a rigid Waterfall,
nor total Chaos!-)

3

Shu: where you're "learning by rote", ONE technique, action by action
Ha: where you're comparing/contrasting techniques, picking the right one case by case
Ri: where you leave "book learning" behind, create your own techniques

A crucial tip: always clarify your NON-goals up front!-)

Thursday, August 27, 2009

Agile vs Waterfall vs Chaos
Waterfall: aim, aim, aim, aim, aim, FIRE!
Chaos: fire!, fire!, fire!, fire!, OOPS, sorry!...
Agile: aim, fire, adjust; aim, fire, adjust;
aim, fire, adjust; aim, fire, adjust; ...

iterative and incremental development
"release early, release often"
Agile methods try to extract the aspects
that work and apply them with discipline
...and pick coding and testing techniques
well-suited to the reality at hand

4

Strategic Agility

5

...traditional approaches to strategy
often collapse in the face of
rapidly and unpredictably changing
industries ... because they over-
emphasize the degree to which it
is possible to predict ...
... change is the striking feature of
contemporary business ... the key
strategic challenge is managing
that change.

So what IS it about?
sharing my experiences (at Google and
before, as an engineer, tech lead, manager:
not anecdotes but "the gist")

on ONE good way to organize, perform
and manage software development
no doubt there are others!-)

I attack some very popular theses
& recommend books that defend them!-)

"tips & tricks" (useful in many cases...)
partly in a "dialectical" arrangement...;-)

6

yes, there _are_ degrees of "agility" (but no: Chaos isn't one such degree -- it's a "falling
of the edge":-).

Shona was a partner at McKinsey (leader of Global Strategy Practice) when she wrote
this book -- soon after she joined Google, where she's now Senior Vice President for
Business Operations. Kathleen is Professor of Strategy and Organization at Stanford.

Secondary but helpful tips: clarify your goals (once the NON-goals are sharply set;-).

Thursday, August 27, 2009

Managing Risk

7

"actively attack risks, otherwise
they will actively attack you"
risk 1: building the wrong thing
risk 2: building the thing wrong
to fight risks, they have to be
VISIBLE (use TRANSPARENCY)
cheat: fight them when they're little and
can't yet fight back (ANTICIPATE risks)
just one downside: will this really help your
career? (do you truly care?)

How Much Control?
if a project starts in "chaos" (zero
"control"), we easily observe that adding a
little control increases project efficiency
so, if a little control is good, more must be
better, right...?
wrong! there can easily be too much

the "sweet spot" for the "just right"
amount of control varies by project

how "predictable" is the project?
how innovative (thus unpredictable)?
how changeable requirements/needs?

8

Modern Fighter Planes...

are areodynamically unstable
BY DESIGN
that's the only way in which
they can be as maneuvrable
as they need to be
so, they require constant
monitoring & adjustment

"fly-by-wire" processes

9

We often reward "heroic effort" -- and not the foresight and planning that make the
heroism unnecessary and offer much better ROI. Bosses and customers used to be
shielded from problems and risks may freak if you use transparency to display all risks
and problems with your projects, even though this puts them in control and maximizes
chances of success and quality. Do you care about being rewarded and praised, or are
you out for Self-Actualization and Transcendence? (See Manslow Pyramid later)

This truth is "fractal" -- applies (in different but similar ways) at all levels, from projects to
huge firms.

AKA, "the price of [maneuverability and fast response to change] is constant vigilance".

Thursday, August 27, 2009

Low-Innovation Projects

10

Relative Amount of Control

Pr
oj

ec
t

Ef
fe

ct
iv
en

es
s

High-Innovation Projects

11

Relative Amount of Control

Pr
oj

ec
t

Ef
fe

ct
iv
en

es
s

Who IS a Manager?

12

Again, not just "projects" -- conceptually applies to any endeavor and to whole
organizations.

I actually picked only managers I respect and appreciate for this slide (well, not the PHB,
I guess, but he does give me MANY laughs:-). The lower-left corner knight is Swedish
King Gustavus Adolphus. The football guys on the right are Italy's Word Champion team
from 2006 -- the one holding the cup is Cannavaro, the playing captain; in the top left is
Lippi, the non-playing manager/trainer of the winning team, holding the same cup later.
Iacocca, Mayer, Jobs, Cox, Hopper, hopefully need no intro:-)

Thursday, August 27, 2009

"Traditional" Management
top-down hierarchy (often many layers)

a plus: matches authority/responsibility
a minus: impedes flow of communication

"lowest" level is closest to customers,
prospects, production, technology...
...thus likeliest to notice things, get
bright new ideas for innovation...
but information/ideas must travel up,
where a decision is made, and
must then travel back down (SLOW!)

13

"Knowledge Workers"
more and more important in the economy
highly professional in their field(s)
top productivity requires them having very,
very high flexibility and autonomy
no intrinsic respect for "authority" not
underpinned by professional competence
subculture often based on "peer
recognition" among colleagues
how does "the manager" gain the
KWs' trust and respect...?

14

Managing Professionals
software developers are highly skilled
professionals

if yours aren't, then that's your FIRST
priority to address!!!
if they are, INVEST in them (they ARE
your greatest asset, bar none)

your job: point them in the right direction,
help teams jell, help them grow, keep track
of progress, blocks, and risk, coordinate
NOT your job: MICROmanage them!-)
...what about MOTIVATION...?

15

'nuff said...

It's a new term, but the concept is very old (though it accounts for a growing fraction of
the economy as time goes by). Given key workers who live in a subculture where
technical competence is the main determinant of status, how does the manager gain their
trust and respect? (This is known in the trade as "foreshadowing":-).

Hiring well is VERY difficult (I've heard good things about Joel's latest book, "Smart and
Get Things Done", which is right on the subject, but haven't read it myself yet at the time
of writing). Removing from the team/organization people that are wrong for it is, or
SHOULD be, even harder (you ARE messing with another person's life -- if that doesn't
make you shudder, I'm worried), but nevertheless crucial for the success of the project,
team, firm, etc.

Thursday, August 27, 2009

Human Motivation

16

Transcendence
Self-Actualization
Aesthetic, Delight
Cognitive, Learning
Esteem, Recognition
Belonging, Affection

Safety, Security
Physiological, Survival

Maslow's general
ideas on human

needs are good...:

...but, not coming
necessarily in

bottom-up order!

The engaged employee

17

I know what’s expected
tools, materials, equipment
I often/mostly get to do
what I do best
I get recognition, praise
manager cares about me
 " encourages my growth
my opinions matter here
I connect w/the mission
quality matters here

No mere cogs in the wheel
learn all you can about your developers’
specific, individual strengths & weaknesses

particularly tech leads and subordinate
managers, if any, but not just them

play to their strengths
plan ways for them to outgrow weaknesses

coaching, training, books, pairing, ...
making unreasonable demands can burn
them out (watch out for burnout!!!)
making only fully reasonable demands
provides no challenge (stretch goals)

18

Most places quote the simpler, older 5-level version, but I'm very keen on this one (from
Maslow's later works). "Transcendence"'s main mainfestation is "helping others *for the
sake* of helping others" (not for reciprocity, belonging, to get praise, etc), and I concur it
IS the highest peak of human achievement, beyond even self-actualization. As for order,
it's obviously NOT linear -- e.g., soldiers often risk their lives (survival and safety levels)
for the sake of their "unit" (belonging, recognition), etc.

The exact wording of the 12 principles is claimed as copyright by the book's authors, so
I've paraphrased the ideas behind them (ideas can't be copyrighted, thanks be!) --
actually, only the nine out of 12 that I think matter most in this context (the authors
correctly point out how difficult it is to fit considerations of _compensation_ in there!).
Exercise: match each element to the relevant points in Maslow's Pyramid.

Managing professionals as if they were "interchangeable parts" is the single worst source
of management mistakes. Professionals (good ones, especially) thrive on challenge --
but you have to balance that (stretch goals) with avoiding their burning out.

Thursday, August 27, 2009

Becoming a Leader
"is not something that
happens to you, but
something you do"
"all leading is leading
change": Motivation,
Organization, Ideas
"always be sincere
(whether you mean it
or not)"

19

Trust...

20

is mutual, and built up over time
you must earn & deserve developers’ trust

technical ability & “technical currency”
true, not faked, interest in them as
individuals, within and outside work

they must earn & deserve yours
tech skills, integrity, goal-focusing
but: always start “trusting by default”!

helpful prereq: hire VERY selectively!-)

Trust is a Virtuous Circle

21

The third point is obviously a funny quip -- but there's depth behind it, just like there is
behind every funny anecdote and homily in this excellent book. A book that can easily be
appreciated at any level of experience but will give you more and more in proportion to
what you have to start with, and what you put into reading, studying, and applying it in
your life.

Pointing out the most important issues in the two-way exchange of trust between
manager and developers -- and the (I hope:-) non-obvious connection back to hiring. You
don't hire just for technical excellence -- character and personality are ALSO key.

Trust can build on itself, gradually and progressively (of course, a breach of trust can
similarly snowball into very justified MIStrust; perhaps the most common example in our
context is the manager that tries to grab credit for himself, or shunt blame to developers,
rather than properly taking his responsibilities and giving credit to his people).

Thursday, August 27, 2009

More about Trust...

22

Trust, but Verify

23

-> delegate, but oversee
"delegate" does NOT mean "abdicate"

-> you remain entirely responsible if
anything you've delegated blows up
-> "joint and several" responsibility

tools for effective, unobtrusive oversight
daily meetings
burndown charts & other info radiators
automatic emails on source commits
short, regular 1-on-1 meetings

Helping Teams Jell
face-to-face interactions are the key

the daily ones are the most important
consider "daily meetings" for that
"offsites" and celebrations matter too
are non-colocated "teams" possible...?

OSS lessons: spread-out teams+sprints
we're always looking for tech fixes...:-)

"whole-team ownership" can help too
balance between uniformity and diversity
are YOU part of the team? SHOULD you?

24

Axelrod works on simple but interesting mathematical models and simulations of
"prisoner dilemma" (and has further published more work on the subject). Covey's is a
typical, high-quality "self-help-style" book (like his dad's:-). Ridley starts from a biology
(particularly, genetics) perspective, but in this book tries to tie in threads from economics
(including game theory), sociology, anthropology, ... You shouldn't read JUST about
management theory and software development issues, after all...!-)

Yeah, the title's a quote out of context:-). But the key is: you keep responsibility for all
you delegate; the best mechanisms to let you keep an eye on things are just the same
that help *project transparency* all around, plus 1-on-1 meetings (which you should have
anyway) to find out about things that escape the "transparency" mechanisms (mostly
"people issues"). A formal mentor relationship *outside* the reporting chain is also
extremely useful (doesn't help YOU, but helps the FIRM...).

Teams are what really matters most, and many aspects can help a team "jell" and
become MUCH more productive -- chiefly the right kind of face to face interactions, but
issues of "ownership" and uniformity vs diversity also play key roles. A crucial question
(that I'm still leaving open -- more foreshadowing!-) is whether the manager CAN, and
SHOULD, be _part_ of the team s/he manages.

Thursday, August 27, 2009

It's a team sport!

25

Stellman, Greene, O'Reilly,
Berkun, Booch, Doctorow,
McConnell, Boehm, Fogel,
Martelli, Ambler, Oram...

Team Sizes
2-4 generalists: minimum sustainable size

1-person "team" fragile, high-variance, ...
no space for specialists within the 2-4!
"fraction of a person": hard to sustain;-)

5-12: "sweet spot" zone (if some level of
"specialist" knowledge/skill is needed)

you may be able to afford (up to) about 1
specialist per 3-4 generalists in the team

13+: increasingly hard to coordinate
consider splitting team if at all feasible

26

Vary team over time?
a semiclassic "optimized" approach (in RUP)

however... what does that do to the TEAM?

27

My contribution is the least of the book's chapters, but being in such exhalted company
made my heart spin;-). BTW, what would normally be the many authors' royalties go to
charity.

I've seen alleged "teams" of 40 or more people -- but "alleged" is key here;-). More often
these days you see single people assigned as the whole "team" for small subprojects, but
that's far from optimal either. If I could have my pick, I'd have 5 generalists when I can do
w/o specialists, or about 2 specialists and 6 generalists for a big ambitious project when
the specialists' advanced contributions are crucial to the goals (and ideally use
techniques, such as mentoring and pair programming, to "grow" the specialists AND the
generalists at the same time;-).

Systematically changing staffing levels and composition over a projects' macro-terms
lifecycle seems an obvious approach... but you SHOULD consider what it WILL to do
team's cohesion and "jelling". I'm NOT advocating "stationary" teams -- projects
SHOULD have a beginning and an end, and so (on a longer timescale) generally should
team's lifecycles -- but DO consider the people (and their ineffable dynamics as a jelled
team!), NOT just the single task!!!

Thursday, August 27, 2009

How many can YOU manage?
...and manage WELL...?

varies by oversight needs, location, ...
and, what else do you do besides that?-)
direct reports: 6, a breeze; 12, good; 24,
stretching it a bit; 48 "is right out"

+: count indirect reports as a fraction

28

The HyperProductive Dev'l
estimated to be 4-10 times as productive as
"normal" good developers (some sources
quote estimates up to 30)
these apply to only SOME phases of the
development lifecycle (typically: low-level
design, coding, debugging, optimizing)
how do you fit him/her best into the team?

can s/he help teammates grow?
or, will they just slow him/her down?
does s/he have, or want to grow, any
leadership qualities?

29

Development Tools
what needs to be standardized?

language, lib, style, standards for testing,
release engineering, communication
source-code control, issue-tracking, build
scripts (ideally: continuous integration),
testing (AUTOMATED, at ALL levels!)

many other tools need not be uniform
editors/debuggers/IDEs, OS to be used
for development, mail/&c clients, ...
let a thousand flowers bloom (wherever
that is sensibly feasible!-)

30

In one team or several, there IS a limit to the number of people you can manage
effectively, depending on how much hand-holding (or shielding, oversight, etc) your
people need, whether you have other things to do besides people-managing, etc. If
you're a second- or higher-level manager, don't forget to count SOME fraction of your
indirect reports -- they WILL at least occasionally need your direct attention and
involvement (you DON'T want to ossify the organization in order to avoid that, believe
me!)

A nice problem to have, in a sense;-). But, problem (or, "opportunity":-) it sure is. How do
you let the HPD fully express his or her incredible productivity while NOT damaging the
team and other members thereof, and indeed HELPING them grow...?

People want to "mark their space" -- let each developer happily use their favorite editor,
debugger, IDE, etc. But you must stand firm on other issues: the key SHARED tools are
versioning system, issue-tracking system, continuous integration and automated testing
system (the 3 had better be well harmonized and integrated, too:-). Also, there needs to
be consensus on programming language (and style, libraries, frameworks, ...), and
standards for testing levels, release/deployment activities, docs and other forms of
communication -- all indispensable issues to afford "whole team ownership", an
absolutely crucial practice.

Thursday, August 27, 2009

Can you be IN the team?

31

“Once you have four or more
people in your group, you can’t

perform technical work and still
be a great manager.” (Wk 6)

“Managers are not usually part
of the teams that they

manage ... leadership just doesn’t
have much place here.” (Ch 23)

Maybe you can, & should...

32

“Tech leads split their time
between development tasks
and management tasks, not
working exclusively in either
realm.” (T.15: Let a tech lead)

ONE possible way to manage software
development is to "get your hands dirty"
with it (definitely not the ONLY one...!-)

Shd you be a coxswain...?

33

"with" rowers (coxswain doesn't row, just
steers & directs!-) are sometimes faster...
...but not ALWAYS, sometimes coxless's best
(key issue: how many rowers?)

Two excellent books (which I both heartily recommend) heartily endorsing the traditional
idea that managers can never do technical work, be part of their teams, exercise
"leadership"...

...and another excellent book arguing otherwise. So maybe, while not the ONLY way,
ONE way to manage knowledge workers IS to be (part-time) one of them...?

Rowing lets us argue both ways -- for large-enough teams of rowers, a non-rowing
coxswain appears to be a plus; but for smaller boats, the "without" times appear better;-)

Thursday, August 27, 2009

At times you MUST pitch in
"When time and labor
are running short, stop
working on ['big' things]
and just pitch in [...] some
would-be leaders have
such an inflated image of
themselves that they
cannot stoop to mere
implementation" (!)
...but, why wait for the
"running short" stage?-)

34

One way to manage SW

35

say that manager M is a technical peer of
the developers (design, code, debugging...)
M can nurture mutual trust, interaction and
respect by and for the developers by
deploying him/herself as a “wildcard
technical resource”

not for the “fun” tasks, but, rather,
for urgent ones requiring an extra pair of
hands brain hemispheres right now,
be they fun or (preferably!-) chores

many objections should come to mind here...

Wait, but, what about...

36

If you’re following critically, you should have
one or more of the following objections...:
1. what about Brooks’ Law?
2. shouldn’t a manager always delegate?
3. must be neglecting “real” mgmt work!
4. it’s a waste of technical talent.
5. ...supply your own objections...:-)

Weinberg is talking about generating ideas vs executing on them -- but I think this
generalizes well... except that you shouldn't wait for emergencies where "time and labor
are running short" before you DO pitch in -- that's very much the wrong approach.

So here's my core thesis, which I've been pushing for years -- one approach to let a
technical manager "get their hands dirty" in SOME of the team's professional work.

Of course, many objections usually get raised here (I'm selecting a subset compared to
what I do when I teach about this very specific idea exclusively, rather than about
management in general as I do here:-).

Thursday, August 27, 2009

Brooks’ Law

37

“Adding programmers to a late
software project makes it later”
Yes, but: everybody always omits
the immediately-preceding
qualification: “Oversimplifying
outrageously, we state”...!-)
also: just don’t let it become late!-)

Based on extra time for extant programmers to bring
new ones up to speed + extra communication overhead

If a manager is always up-to-speed, & always
communicating: no extra overhead ☛ no Brooks’ Law

Shouldn’t a mgr delegate?
sure, but, delegate what?

delegating doesn’t remove responsibility
always stay up to speed on projects!
you must trust your developers to do
what’s right -- but, fulfil your part of the
bargain, to enable them to do it!

once developers see that your tech
contributions are excellent,

and trust you to properly give credit,
they’ll want you involved AMAP!

38

Neglecting “real” mgmt?
there is no “realer” management work than
this set of tasks: nurturing trust, caring for
your people, helping teams jell, keeping
careful track of your projects, helping your
people grow, focusing on goals & priorities
nothing wrong with writing some unit-tests,
critiquing a design, or slogging through a
deucedly hard debugging session, since it
helps you accomplish all of these tasks!
besides, this way we get to have some
hacking fun, too: avoids US burning out!-)

39

I LOVE Brooks -- but his Law is often misquoted, misused, and misapplied.

Delegation is not abdication!

"Real management" is anything and everything real (successful) managers do, that helps
their projects!-) Balance is needed (as it always is "out here on the edge":-) -- don't hog
the fun tasks, don't override your tech leads and make their jobs irrelevant, don't take
credit for technical accomplishments, etc, etc -- but part of the balance is getting the
challenge and fun to deal directly with hard technical tasks, at least once in a while!-)

Thursday, August 27, 2009

Waste of tech talent?
it’s not wasting, but leveraging it!
there ARE places where management is
only for those who have nothing more to
contribute technically... but not
SUCCESSFUL ones!-)
“but isn’t leverage high only in design”?

no way!
“the devil is in the details”
and where’s a devil to be fought, that’s
where the best exorcists are needed!-)

40

http://www.randsinrepose.com/archives/
2007/02/07/technicality.html
"get the team to solve this problem
without you coding" ... Good advice,
huh? ... Too bad I'm wrong.
Wrong? Yup. Wrong. Not totally, but enough that
I might need to make some calls to past co-
workers and apologize. "That not coding pitch
of mine? Wrong. Yeah. Start programming
again. Start with Python or Ruby. Yeah. I mean
it. Your career depends on it."

41

Where does one find time?

42

NOT in working incredibly long hours
aim for 40 
settle for 45 
50 is right out 

(Note: I mean actual work time, net of [e.g.]
blogging, snacking, surfing, chatting...!-)

nor in extensive telecommuting (face-to-
face is the most effective form of
communication, and communication is the
most crucial part of any manager's job)
time management works, when done right

That's kind of the flip objection to the last one -- that great techies should never move on
to management to avoid "wasting" their tech talent (or, in a more attenuated form: that
they should strictly focus on "upstream" activities, not coding, debugging, docs,
deployment, testing, ...). Successful organizations in the hi-tech field MUST have good
ways to balance leadership and technical contributions (dual ladders AND ways for
people to "straddle" both ladders, hop back and forth between them, etc:-).

I was particularly happy, a good while after I'd started my solo crusade to allow tech mgrs
SOME hands-on tech contributions, to see one of my favorite bloggers on technical
management issues pick up on exactly the same theme. Lopp's book is good, too (if you
can stand books taken/inspired from blogs -- I'm OK w/them). And his ability to state he
was wrong, and apologize, comes VERY close to PROVING he's a great manager (and
all-around human being), not just a great writer about it!-)

There's a warped sense of pride in "working" 60-hours weeks -- but it's a horrid idea
(even if you're used to it, you're unlikely to be producing at the top of your potential).
Telecommuting's a very sweet dream... but face-to-face still IS best! So, you need a set
of techniques, tricks and tips known classically as "time management" (or more modernly
as "getting things done").

Thursday, August 27, 2009

Working Long Hours

43

Average Hours Worked per Week

Pr
od

uc
ti
vit

y
($

/h
ou

r)

if the schedule is slipping, do not try to
make up time by forcing your developers to
work even harder: it will exacerbate the
problem. Acknowledge reality: relax
schedule constraints, reduce functionality,
or both. To do neither is folly.
you've misplanned/misscheduled
if 60+ hours/wk are the norm:
overtime as common practice is
unsustainable AND an indication
of severe mgmt malpractice.

Booch Against Overtime

44

When pace's unsustainable

45

productivity loss -- even production loss
no (time) "reserves" for emergencies

if you're running flat out, and an
emergency requires a sprint, now what?
a wise general keeps a reserve...!

things get worse as it drags on (and on)

one key issue: are you
rewarding RESULTS or

EFFORT? "You'll get what
you measure"!-)

Of course, this is merely indicative (e.g., I know that at my best I'm worth more than $100/
hr!-), but I hope it leaves the right impression -- there is SOME number of work hours per
week where your productivity is maximal, and if you way overdo it your productivity will go
negative -- by working in a far-too-tired state you'll do DAMAGE (negative value).
Actually, it's been measured that the productivity per-hour of French workers (lowest hr/
year in G8) is higher than in the US (highest), though the total production of _France_ as
a whole suffers (Sarkozy promises to make them work more hours/year -- and yet he
WON!-)

OCCASIONAL weeks at 60, 70, even 80 hours of actual work are inevitable --
emergencies, urgencies, and so on. But *keep them occasional*, for yourself as much as
for your reports. Remember: it's a marathon, not a 100-meters dash!

The "key issue" about performance measurement and rewards is truly key. Again, it's too
easy to reward "heroic efforts" rather than good strong planning which saves the needs
for such efforts and obtains better RESULTS.

Thursday, August 27, 2009

A Better Approach

46

it’s not just for SAs:
at least 80/90% is good for
developers and managers
esp. w/operational duties

brief, useful summary talk:
http://video.google.com/videoplay?
docid=7278397109952382318
key ideas: focus & interrupts,
single TODO list & its handling,
building routines, prioritization

Limoncelli on Interrupts

47

they're inevitable, so we must manage them
"interrupt-driven" work's VERY inefficient

main strategy:"delegate", "record", "do"
direct interrupts away from you (to the
proper target for them) -- you're NOT all
powerful, nor responsible for EVERYthing
acknowledge it, write it down, DO LATER
if <2 minutes, DO NOW

"mutual interrupt shield"
(and other "flappers":-)

Time Mgmt 101 for mgrs

48

schedule many, regular, short meetings
never a problem if a meeting ends early
cancelable at last minute in emergencies
always, promptly take “sidelines” offline
punctuality saves time for everybody

don’t schedule meetings back-to-back!
always think about who should be there

easy but wrong to slip into a “when in
doubt, invite them” mentality

always be ready to snatch opportunities
laptop, book, Blackberry/PDA, WWFY

Tom's first-person experience is as a (great!) system administrator, so, quite rightly, that's
what he writes about -- but his observations and tips, for the most part, do generalize to
all of us.

"Deflecting" and otherwise managing interrupts is a technique I single out because it's
quite as important for managers as it is for sysadmins. The "mutual interrupt
shield" (unless you're high up enough to warrant an administrative assistant, and, even
then...) is a particularly useful, although non-obvious, technique for managers.

Here are a couple of elementary but crucial tips specifically for managers (the "snatch
opportunities" one applies more widely;-).

Thursday, August 27, 2009

Time Mgmt 102 for mgrs

49

consider each piece of work specifically
does it really need to be done at all?
if so, am I the best person to do it?
&, when should it optimally be done?

don’t let emergencies emerge!
a stitch in time saves 9.4247779677

schedule ~50% of your “discretionary” time
each week for not-(yet!-)-urgent “fillers”

a wise general strives to keep a reserve
can be rescheduled for emerging work
don’t wait until they are urgent!

"Manage Actions, not Time"

50

highly non-specific (manager
oriented, but not hi-tech)
has many enthusiasts, a real
“movement” around it
http://www.davidco.com/
key ideas: mind like water,
single in-basket, highly
structured flow, action steps,
“two minutes rule”

doesn’t quite work for me, but, works well for many!

Ars longa, vita brevis...

51

more books than one can make time for!-)

These are a bit more advanced, but no less crucial. Care to guess what that weird
number IS, btw?-)

I'm not really into the GTD movement, myself; but I've seen it work great for many, so I
feel I must at least mention it!

Mintzberg (many books) is at the same time a Solon of management
teaching, and a trenchant critic of current pratice in the field. Berkun
has many good tips and some interesting deep reflections on project
management. FIT (and Fitnesse) are great ways to develop test-
driven SW (at acceptance-test level, roughly). Feathers is great if you
need to deal with untested, badly documented legacy SW (don't we
all!). Britcher is pessimistic but worth reading (and critiquing).
"Dreaming in Code" is the best case study yet on "why do bad things
happen to good projects" -- Rosenberg has no prejudged idea, gives
you lots of info and lets YOU judge.

Thursday, August 27, 2009

http://www.aleax.it/bayp_html.pdf

52

Q?
A!

53

"Il Principe", N. Machiavelli
"Behind Closed Doors", J. Rothman, E. Derby

"Peopleware", T. DeMarco, T. Lister
"Agile & Iterative Development", C. Larman

"Ship It!", J. Richardson, W. Gwaltney
"Agile Estimating and Planning", M. Cohn

"Object Solutions", G. Booch
"Agile Software Development", R. Martin

"The Psychology of Computer Programming", G. Weinberg
"The Limits of Software", R. Britcher

"Dreaming in Code", S. Rosenberg
"Project Management", S. Berkun
"Software Runaways", R. Glass

"Working Effectively with Legacy Code", M. Feathers
"Mintzberg on Management", H. Mintzberg

"FIT for Developing Software", R. Mugridge, W. Cunningham
"Death March", E. Yourdon

"The Mythical Man-Month", F. Brooks
"Time Management for System Administrators", T. Limoncelli

"The Art of War", Sun Zi
"How to Lose a Battle", B. Fawcett

"Getting Things Done", D. Allen
"Trust", F. Fukuyama

"The Evolution of Cooperation", R. Axelrod
"The Speed of Trust", S. Covey

"The Origins of Virtue", M. Ridley
"Beautiful Teams", A. Stellman, J. Greene, et al.

"Competing on the Edge", S. Brown, K. Eisenhardt
"The Elements of Great Managing", R. Wagner, J. Harter

"Joel on Software", J. Spolsky
"Agile Software Development: The Cooperative Game", A. Cockburn

Also, remember I'm always around on the mailing list, and passionate
about these issues;-).

Thursday, August 27, 2009

