
©2010 Google -- aleax@google.com

Powerful Pythonic Patterns

http://www.aleax.it/bayp010_ppp.pdf

Audience levels for this talk

2

Shu

Ha

Ri

("Retain")

("Detach")

("Transcend")

5' Q & A at the end

(+: let's chat later!)

What's a Pattern?

3

identify a closely related class of problems
if there is no problem, why solve it?-)

identify a class of solutions to the problems
closely related, just like the problems are

may exist in any one of many different
possible scales (or "phases of work")

just like the problems do

A Pattern's "problem(s)"

4

each Pattern addresses a problem
rather, a closely related class of problems

a problem is defined by:
"forces"

constraints, desiderata, side effects, ...
"context" (including: what technologies
can be deployed to solve the problem)

A Pattern's "solution(s)"

5

to describe a pattern, you must identify a
class of solutions to the problems

meaningful name and summary
a "middling-abstraction" description
real-world examples (if any!-), "stars"

one-star == "0/1 existing examples"
rationale, "quality without a name"
how it balances forces / +'s & issues
pointers to related/alternative patterns

Is any field Pattern-less?
if a field of endeavor is bereft of patterns,

either they haven't been looked for yet
i.e.: they exist, but aren't published

or else, that alleged "field" is merely a
bunch of perfectly chaotic, indeed
ergodic processes

in fact, not "a field" at all!-)

6

Why bother w/Patterns?
identifying patterns helps practitioners of a
field "up their game"...
...towards the practices of the very best
ones in the field

precious in teaching, training, self-study
precious in concise communication, esp. in
multi-disciplinary cooperating groups
also useful in enhancing productivity

to recognize is faster than to invent
structured description helps recognition

7

What's a DESIGN Pattern?

8

we work in order to deliver value to people
our work is a connected mesh of activities
that fall in distinguishable, different areas
design is one of the many areas of activity
("phases of work") into which we can
classify our work

taxonomies are never perfect
but sometimes they can help a little;-)

Why do we work, at all?

9

we work in order to deliver value to people
"make them feel more alive"
AKA "the Quality without a name"

Insert any Dilbert cartoon;-)

How do we work effectively?

10

our work is a connected mesh of activities
find problems, opportunities, connections
identify system structure, details, forces
invent (or discover!) possible solutions
experiment (prototype) to evaluate them
develop (apply) solid implementations
test, deploy (deliver, distribute), document

as for every taxonomy, lines are blurred
and even somewhat arbitrary...
...but it can still help organize ourselves

"Design" is a vague term...
most generically, it means "purpose"
or specifically, "a plan towards a purpose"
a geometrical or graphical arrangement
an "arrangement" in a more abstract sense

...
in "Design Patterns", we mean "design" in
the sense common to buildings-architecture
and SW development:

work phase "between" study/analysis and
"actual building" (not temporally;-)

(SWers use "architecture" differently;-)
11

Other kinds of Patterns

12

Analysis: find/identify value-opportunities
Architecture: large-scale overall-system
approaches to let subsystems cooperate
Human Experience: focus on how a system
presents itself and interacts with people
Testing: how best to verify system quality
Cooperation: how to help people work
together productively to deliver value
Delivery/Deployment: how to put the
system in place (& adjust it iteratively)
...

What's a "Pythonic" Pattern?
a Design Pattern arising in contexts where
(part of) the technology in use is Python
well-adapted to Python's strengths, if and
when those strengths are useful
dealing with Python-specific issues, if any
e.g: http://www.aleax.it/oscon010_pydp.pdf

13

Pythonic Template Method
"template" here means "self-delegation"

classically, via inheritance: base class has
organizing-method, subclasses do hooks

specifically-Pythonic aspects/variants:
overriding data (Queue, ...)
ABCs (or mix-ins) w/organizing-methods
"factored-out" hooks (via delegation)
organizing class can use runtime
introspection to find hook-methods
all of the above (unittest.TestCase)

14

Dependency Injection as TM
a form of "factored-out" TM (and a form of
"Hollywood Principle" aka "Callback" DP)
→ DPs are not a taxonomy!-)

"inject" hooks (callables) as arguments (or
settable attributes of organizing class)

works well with Factory, when the hooks'
job is to build/return usable objects

works best with first-class callables
in Python: functions, classes, bound
methods, closures, callable instances, ...
...wide variety → high applicability!

15

BTW: what's an "Idiom"?

16

small-scale, technology-specific, common
choice of name, arrangement, or procedure
e.g.: "brick-overlap wall" (brick-specific)

pre-stressed concrete, wood, &c have
somewhat-related but different idioms

if __name__ == '__main__': ...
only makes sense in Python

while(*dest++ = *source++) {}
only makes sense in C (or C++)

for(x=y.begin(); x!=y.end(); ++x)...

ANTI-Patterns (& Idioms)

17

commonly-occurring, but counterproductive
Waterfall, Analysis Paralysis, Moral Hazard,
Groupthink, Abstraction Inversion, Fat Base,
Copy&Paste, Backup Generator, Polling, ...
Python-specific examples...:
def __init__(self, this, that): # useless override
 super(Cls, self).__init__(this, that)
for string_piece in many_pieces: # += loop on str
 big_string += string_piece
sum(list_of_lists, []) # same (!) on list

+, most uses of lambda, and any use of reduce!-)

Pattern *Languages*

18

think of each pattern as a word
how are they combined in "discourse"?

"grammar", semantics, pragmatics
hierarchical relationship among patterns of
different scales / levels of abstractions
"peer" relationship among "sibling" patterns

Hierarchical relationships

19

different scales compose/decompose "into
each other" (smaller-scale patterns often
emerge in the context of larger-scale ones)

Plug In architecture pattern is helped by
design patterns Template, Factory, DI, ...
simple Factory or Facade cases can use
import/as idiom:

if ...: import posix as os
else: import nt as os
then use os.this, os.that freely

"Peer" pattern cooperation

20

patterns at the same scale work together
methodology-patterns CodeReviews,
FanaticalTests, ContinuousBuild cooperate
Dependency Injection uses Callback to
implement a variant of Template Method

and often uses Factory patterns too
Strategy and Memento used together let
a Skeleton class delegate _both_
behavior _and_ state issues (!)

Q & A
http://www.aleax.it/bayp010_ppp.pdf

21

? !

