Powerful Pythonic Patterns

http://www.aleax.it/bayp010_ppp.pdf

Audience levels for this talk

Shu
("Retain")

("Detach")

("Transcend")

2

5 Q & A at the end

(+: let's chat later!)

What's a Pattern?

@ identify a closely related class of problems
@ if there is no problem, why solve it?-)

@ identify a class of solutions to the problems
@ closely related, just like the problems are

@ may exist in any one of many different

possible scales (or "phases of work")
@ just like the problems do

A Pattern's "problem(s)"

@ each Pattern addresses a problem
@ rather, a closely related class of problems
@ a problem is defined by:
@ "forces"
@ constraints, desiderata, side effects, ...

o "context" (including: what technologies
can be deployed to solve the problem)

A Pattern's "solution(s)"

@ to describe a pattern, you must identify a
class of solutions to the problems

@ meaningful name and summary
o a "middling-abstraction” description
o real-world examples (if any!-), "stars"

@ one-star == "0/1 existing examples"
@ rationale, "quality without a name"
@ how it balances forces / +'s & issues
@ pointers to related/alternative patterns

Is any field Pattern-less?

o if a field of endeavor is bereft of patterns,
@ either they haven't been looked for yet
@ i.e.: they exist, but aren't published

o or else, that alleged "field" is merely a
bunch of perfectly chaotic, indeed

ergodic processes
@ in fact, not "a field" at all!-)

Why bother w/Patterns?

@ identifying patterns helps practitioners of a
field "up their game"...

@ ..towards the practices of the very best
ones in the field

@ precious in teaching, training, self-study

@ precious in concise communication, esp. in
multi-disciplinary cooperating groups

@ also useful in enhancing productivity
@ to recognize is faster than to invent
@ structured description helps recognition

What's a DESIGN Pattern?

@ we work in order to deliver value to people
@ our work is a connected mesh of activities
that fall in distinguishable, different areas

@ design is one of the many areas of activity
("phases of work") into which we can

classify our work
@ taxonomies are never perfect
o but sometimes they can help a little;-)

Why do we work, at all?

@ we work in order to deliver value to people
@ "make them feel more alive"

o AKA "the Quality without a name"

Insert any Dilbert cartoon;-)

How do we work effectively?

@ our work is a connected mesh of activities
@ find problems, opportunities, connections
@ identify system structure, details, forces
o invent (or discover!) possible solutions
o experiment (prototype) to evaluate them

o develop (apply) solid implementations

o test, deploy (deliver, distribute), document
@ as for every taxonomy, lines are blurred

@ and even somewhat arbitrary...

@ ..but it can still help organize ourselves

10

"Design” is a vague term...

@ most generically, it means "purpose”

@ or specifically, "a plan towards a purpose”

@ a geomeftrical or graphical arrangement

@ an "arrangement” in a more abstract sense
o ..

@ in "Design Patterns”, we mean "design"” in
the sense common to buildings-architecture
and SW development:

@ work phase "between" study/analysis and
"actual building" (not temporally;-)

@ (SWers use "architecture" differently;-)

11

Other kinds of Patterns

@ Analysis: find/identify value-opportunities

@ Architecture: large-scale overall-system
approaches to let subsystems cooperate

@ Human Experience: focus on how a system
presents itself and interacts with people

@ Testing: how best to verify system quality
@ Cooperation: how to help people work
together productively to deliver value

o Delivery/Deployment: how to put the
system in place (& adjust it iteratively)

" Y

What's a "Pythonic” Pattern?

@ a Design Pattern arising in contexts where
(part of) the technology in use is Python

o well-adapted to Python's strengths, if and
when those strengths are useful

@ dealing with Python-specific issues, if any

o e.g: http://www.aleax.it/oscon010_pydp.pdf

Pythonic Template Method

o "template” here means "self-delegation”

@ classically, via inheritance: base class has
organizing-method, subclasses do hooks

o specifically-Pythonic aspects/variants:
o overriding data (Queue, ...)

@ ABCs (or mix-ins) w/organizing-methods
@ "factored-out" hooks (via delegation)

@ organizing class can use runtime
introspection to find hook-methods

@ all of the above (unittest.TestCase)

Dependency Injection as TM

@ a form of "factored-out" TM (and a form of
"Hollywood Principle” aka "Callback" DP)

@ — DPs are not a taxonomy!-)

o "inject" hooks (callables) as arguments (or
settable attributes of organizing class)

@ works well with Factory, when the hooks'
job is to build/return usable objects

® works best with first-class callables

@ in Python: functions, classes, bound
methods, closures, callable instances, ...

@ ..wide variety — high applicability!

15

BTW: what's an "Idiom"?

@ small-scale, technology-specific, common
choice of name, arrangement, or procedure

o e.g.: "brick-overlap wall" (brick-specific)
@ pre-stressed concrete, wood, &c have
somewhat-related but different idioms

o1f _name__ == '__main__"':

@ only makes sense in Python
o while(*dest++ = *source++) {}
@ only makes sense in C (or C++) popmrmrs
@ for(x=y.begin(); x!=y.end(); ++x)... |

16

ANTI-Patterns (& Idioms)

@ commonly-occurring, but counterproductive

@ Waterfall, Analysis Paralysis, Moral Hazard,
Groupthink, Abstraction Inversion, Fat Base,
Copy&Paste, Backup Generator, Polling, ...

@ Python-specific examples...:

def __init__(self, this, that): # useless override
super(Cls, self).__init__(this, that)

for string_piece in many_pieces: # += loop on str
big_string += string_piece

sum(list_of_lists, []) # same (!) on list

+, most uses of lambda, and any use of reduce!-)

Pattern *Languages™

@ think of each pattern as a word
@ how are they combined in "discourse"?
@ "grammar"”, semantics, pragmatics

@ hierarchical relationship among patterns of
different scales / levels of abstractions

@ "peer” relationship among "sibling" patterns

Hierarchical relationships

o different scales compose/decompose "into
each other” (smaller-scale patterns often
emerge in the context of larger-scale ones)

@ Plug In architecture pattern is helped by
design patterns Template, Factory, DI, ..

@ simple Factory or Facade cases can use
import/as idiom:

1f ...: import posix as os
else: import nt as os
then use os.this, os.that freely

"Peer" pattern cooperation

@ patterns at the same scale work together

@ methodology-patterns CodeReviews,
FanaticalTests, ContinuousBuild cooperate

@ Dependency Injection uses Callback to
implement a variant of Template Method

@ and often uses Factory patterns too

@ Strategy and Memento used together letf
a Skeleton class delegate _both__
behavior _and__ state issues (!)

Q& A
http://www.aleax.it/bayp010

