
©2007 Google -- aleax@google.com

Python Patterns of
Concurrent Programming

http://www.aleax.it/accu_pyconc.pdf

http://www.aleax.it/py4prog.pdf
http://www.aleax.it/py4prog.pdf

The "levels" of this talk

2

Shu

Ha

Ri

Py

Concurrency("Retain")

("Detach")

("Transcend")

Concurrency

3

we want to do several things "at once"
to react to "events" (mostly, but not
exclusively, "external" ones)

actions by the user[s] (on a UI, or...)
network events, I/O completion, OS...
parsing, graph-walking, ...

to reduce "latency" (vs "throughput")
to exploit many available resources (CPUs,
cores, computers...) towards a single goal
simultaneously

"parallel", "distributed", ...

Event-driven: the callback
the "callback" idea

shades of the Observer DP
pass a callable to "somebody"

in Observer: to the Observable target
the "somebody" stores it "somewhere"

a container, an attribute, whatever
and will call it "when appropriate"

in Observer: on state-changes
in Event-driven: on meaningful "events"

also used in "customization" (e.g., sort)

4

Callback issues
what arguments are to be used on the call?

none: simplest, very rough
in ODP: the Observable object whose
state just changed

lets 1 callable observe several Obs'bles
or: "description" of state changes

saves "round-trips" to obtain them
in EDA: identifier or description of event

but -- what about other arguments (related
to the callable, not to the Obs'ble/Event)...?

5

Fixed args in callbacks
functools.partial(callable, *a, **kw)

pre-bind any or all arguments
however...:

x.set_cb(functools.partial(f, *a, **kw))
vs

x.set_cb(f, *a, **kw)
...having the set-callback itself accept (and
pre-bind) arguments is far neater/handier
sombunall1 Python callback systems do that

6
1: Robert Anton Wilson

Callback "dispatching"
what if more than one callback is set for a
single event (or, Observable)?

remember and call the latest one only
simplest, roughest

remember and call them all
LIFO? FIFO? or...?
how do you _remove_ a callback?
can one callback preempt others?

can events (or state changes) be "grouped"?
use object w/methods instead of callable

7

Callbacks and Errors
are "errors" events like any others?
or are they best singled-out?
http://www.python.org/pycon/papers/deferex/
the Deferred pattern: one Deferred holds...

N "chained" callbacks for "successes" +
M "chained" callbacks for "errors"
each callback is held WITH opt *a, **kw
plus, argument for "event / error
identification" (or, result of previous
callback along the appropriate "chain")

8

Scheduled callbacks
standard library module sched
s = sched.Sched(timefunc, delayfunc)

e.g, Sched(time.time, time.sleep)
evt = s.enter(delay, priority, callable, arg)

or s.enterabs(time, priority, callable, arg)
may s.cancel(evt) later

s.run() runs events until queue is empty (or
an exception is raised in callable or
delayfunc: it propagates but leaves s in
stable state, s.run can be called again later)

9

Some other Python callbacks
for system-events:

atexit.register(callable, *a, **k)
oldhandler = signal.signal(signum, callable)
sys.displayhook, sys.excepthook,
sys.settrace(callable)
readline.set_startup_hook,
set_pre_input_hook, set_completer

parsing, timing, debugging, customization, ...

10

Event-driven: "the Loop"
demultiplex external events coming into the
program from several distinct channels

select.select, select.poll (+ 3rd-party
ones: python-epoll, Py-Kqueue, ...)
win32all.MsgWaitForMultipleEvents

"register" event sources (fd's, windows,
kernel sync objects,)
call the demux function (maybe w/timeout)
returns set of events occurred (or, times
out, allowing optional further "polling"...)

11

Dispatching Events
the "Event Loop" per se ``bottlenecks''
events into 1 spot (+ others if ``modal'')
worst solution: if/else tree at that spot
better: register callbacks for "specific"
events (by type, source, or ...)

& add to the "Event Loop" the registry
and dispatching of callbacks it affords

Loop + Registry/Dispatching == REACTOR
http://www.cs.wustl.edu/~schmidt/PDF/
reactor-siemens.pdf

12

http://www.cs.wustl.edu/~schmidt/PDF/reactor-siemens.pdf
http://www.cs.wustl.edu/~schmidt/PDF/reactor-siemens.pdf
http://www.cs.wustl.edu/~schmidt/PDF/reactor-siemens.pdf
http://www.cs.wustl.edu/~schmidt/PDF/reactor-siemens.pdf

asyncore
asyncore.loop(timeout, use_poll, map, count)

only supports events handled by select
(or poll, if use_poll is true)
also does dispatching (so: a reactor)
items in map (or asyncore.socket_map)
must have methods readable, writable, all
of socket's methods, plus handle_* ones...

normally subclass asyncore.dispatcher
also handles add-to-the-map, wraps
socket methods
to buffer: dispatcher_with_send
for files (Unix only): file_dispatcher

13

asyncore Echo srv (1/2)
import asyncore

class MainServerSocket(asyncore.dispatcher):
 def __init__(self, port):
 asyncore.dispatcher.__init__(self)
 self.create_socket(socket.AF_INET,
 socket.SOCK_STREAM)
 self.bind(('',port))
 self.listen(5)
 def handle_accept(self):
 newSocket, address = self.accept()
 SecondaryServerSocket(newSocket)

14

asyncore Echo srv (2/2)
class SecondaryServerSocket(
 asyncore.dispatcher_with_send):
 def handle_read(self):
 receivedData = self.recv(8192)
 if receivedData:
 self.send(receivedData)
 else:
 self.close()

MainServerSocket(8881)
asyncore.loop()

15

Twisted Core
twisted.internet.reactor module

IReactorCore: "system events", run, stop
IReactorTCP: listen/connect w/Factory
(ServerFactory, ClientFactory)

Factory itf has buildProtocol method
IProtocol has dataReceived method

many other reactor itf's: FDSet, Process,
SSL, Threads, Time, UDP, UNIX
many implementations: select, poll,
KQueue, Win32 (WFMO/IOCP) + many
with GUI event-loops integration

16

Twisted Echo server
from twisted.internet import protocol,
reactor

class EchoProtocol(protocol.Protocol):
 def dataReceived(self, data):
 self.transport.write(data)

factory = protocol.Factory()
factory.protocol = EchoProtocol

reactor.listenTCP(8881, factory)
reactor.run()

17

Interleaving execution
traditional sequential processing:
data = get_all_data()
results = process_all_data(data)
show_all_results(results)

an "interleaved" approach:
finished = False
while not finished:
 d, f = get_some_data()
 r, f = process_some_data(d, f)
 finished = show_some_results(r, f)

reduces latency (may worsen throughput)
AKA "μthreads", "fibers", "tasklets"...

18

Interleaving issues
each component must:

restore its previous state (if any),
do "some" work (not TOO much!),
save its current state (if not finished),
yield control to "other components"
note: MUST yield if risks blocking (I/O...)

clear pluses: programmer has complete
control, works great w/event-driven
approaches, no "surprises", ...
issues: lots of work, some "delicate" points

19

Python interleaving
may use classes (to group state & behavior)
generators are very handy for this

automatically "preserve state" including
"point of execution" at yield time
yield is now "bidirectional" (expression)

no standard "scheduling" conventions (yet)
but, cfr http://mail.python.org/pipermail/
python-list/2007-May/438370.html

don't confuse microthreading, coroutines,
and continuations...

20

http://mail.python.org/pipermail/python-list/2007-May/438370.html
http://mail.python.org/pipermail/python-list/2007-May/438370.html
http://mail.python.org/pipermail/python-list/2007-May/438370.html
http://mail.python.org/pipermail/python-list/2007-May/438370.html

Stackless Python
tasklets (AKA microthreads): wrap a
function for interleaving purposes

supply critical sections, scheduling
(cooperative _or_ even preemptive...)

channels: let tasklets send/receive data
intrinsically cooperate w/scheduling

serialization (pickling/unpickling) for
checkpointing, transfering tasks, ...
popular in games, online and non (EVE
Online, Mythos, Sylphis 3D, ...) for speed
and convenience

21

"Real" Threads
the threading module (NOT legacy thread)
uses underlying OS (preemptive) threading
facilities (for CPython; underlying _VM_
threading facilities for Jython, IronPython)

CPython adds a Global Interpreter Lock
(GIL) to ease integrating non-thread-
aware/safe external C libraries
C-coded extensions may explicitly release
the GIL ("allow threading")/re-acquire it
semantics constrained by cross-platform
needs (priorities, thread-interruption...)

22

Threads & "Atomicity"
will this work? why, or, why not?

d = {}; fd = open('fil.txt')
def f():
 for L in fd:
 k, v = L.split()[:2]
 d[k] = v
t1 = threading.Thread(target=f)
t2 = threading.Thread(target=f)
t1.start(); t2.start()
t1.join(); t2.join()

23

"Thread-safe" iterator
def tsiter(it, L=None):
 if L is None:
 L = threading.Lock()
 it = iter(it)
 while True:
 with L:
 yield it.next()

NB: in 2.5, this needs adding a:
from __future__ import with_statement

24

"Thread-safe" mapping
class tsdict(dict):
 def __init__(self, *a, **k):
 self.L = threading.Lock()
 with self.L:
 dict.__init__(self, *a, **k)
 def __setitem__(self, k, v):
 with self.L:
 dict.__setitem__(self, k, v)
 def __getitem__(self, k):
 with self.L:
 return dict.__getitem__(self, k)
 ...

25

Big risks with this...
not covering _all_ "atomicity" needs:

e.g.: "for k in tsiter(tsd): <body>" STILL
needs "NO ALTERATION" to tsd
throughout the loop (what ensures this?)

the more, finer-grained locks are around,
the higher the risk of deadlocks:

T1 gets lock A then waits on lock B,
T2 gets lock B then waits on lock A...

race conditions and deadlocks are the worst
kinds of bugs (hard to reproduce, hard to
test for, very hard to debug, ...)

26

A more structured approach
make every "shared resource" either
UNCHANGING during multitasking,
or, have it OWNED by ONE dedicated
thread (only one changing OR accessing it)
every other thread requests operations on
the shared resource by sending MESSAGES
to the dedicated owner-thread (and may
wait for a result-message if applicable)
Queue.Queue is the intrinsically-threadsafe
communication structure for messages from
thread to thread (work-request, result)

27

TS file-read-to-Queue
a "self-activated" owner-thread variant

lines = Queue.Queue(N)
def tsread(fn, linequeue):
 with open(fn) as fd:
 for line in fd: linequeue.put(line)
t = threading.Thread(target=tsread,
 args=('fil.txt', lines))
t.setDaemon(True)
t.start()

28

TS "dict service" (1/2)
a more classic "dedicated work thread"

def tsmapping(wrq, d):
 while True:
 op, k, v, rq = wrq.get()
 if op=='set': d[k] = v
 elif op=='keys': v = d.keys()
 elif op=='in': v = k in d
 else: v = d.get(k, v)
 if rq: rq.put(v)

29

TS "dict service" (2/2)
...and a little syntax sugar on top...:
class tsdict(object, UserDict.DictMixin):
 def __init__(self, *a, **k):
 self.wrq = Queue.Queue(N)
 t = threading.Thread(target=tsmapping,
 args=(self.wrq, dict(*a, **k)))
 t.setDaemon(True); t.start()
 self.rsq = Queue.Queue()
 def keys(self):
 self.wrq.put(('keys','','',self.rsq))
 return self.rsq.get()
 ...__getitem__, __setitem__,...

30

Granularity & Performance
each context-switch among threads has a
performance cost (potentially in both
latency and throughput)

so does each locking (and Queue.Queue
intrinsically does locking, too)

consider "batching things up" a bit
compromise betw. throughput & latency

ideal points for context switches: where
they would occur anyway (syscalls, I/O)
avoid polling; consider thread-pools; mix
and match threads w/event-driven ops; ...

31

Processes
heavier/costlier than threads (but not by
much, in Linux, Solaris, Mac OS X, BSD, ...)
better isolation is a good guard vs bugs
(and, can "drop privileges" &c for security)
no GIL -- use all CPUs/cores implicitly
"resource sharing" goes a bit against the
grain (possible, but "message-style" IPC
mechanisms are generally preferable)

IPC via sockets affords nearly unbounded
potential scalability...

see http://pypi.python.org/pypi/processing

32

"Orchestrating" concurrency
Twisted is good at orchestrating all this...

focus on event-driven operations
strong support for threads & processes
particularly strong at networking
some support for interleaving ("Flow" now
deprecated, use task.Cooperator class)

highly structured (chiefly via interfaces)
lots of "moving parts" (alternatives, details,
docs, abstractions...)
is there something simpler to use...?

33

NetworkSpaces
close kin to Linda / tuple spaces
Python implementation uses Twisted

clients also available for R (and Matlab)
dual-licensed open source (GPL or Pro)

5 primitives: store, fetch{Try}, find{Try}
store/fetch like Queue's put/get
multiple "slots" w/arbitrary name per ws
"find" for non-removing read access

works with Sleigh (to distribute and load-
balance work across cores/CPUs/nodes)

34

nws basics
you need to be running an nws server

there's only one kind (Python+Twisted)
may run as a daemon
may monitor it through a web itf

optional, helpful "pybabelfish" daemon
must have nws clients installed on all hosts

may be Python, R, or Matlab ones
language interop via ASCII strings, only
within 1 language, any serializable obj OK

35

An NWS "server"
>>> from nws import client
>>> ws = client.NetWorkSpace('primes')
>>> import gmpy
>>> pr = [gmpy.mpz(2)]
>>> def store_prime(n):
... while len(primes)<=n:
... pr.append(pr[-1].next_prime())
... ws.store('prime', int(primes[n]))
...
>>> while True:
... store_prime(ws.fetch('n'))
...

36

An NWS "client"
>>> from nws import client
>>> ws = client.NetWorkSpace('primes')
>>> def getprime(n):
... pr.store('n', n)
... return pr.fetch('prime')
...
>>> print [getprime(n) for n in range(23)]
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,
37, 41, 43, 47, 53, 59, 61, 67, 71, 73,
79, 83]

37

Sleigh
an enhancement of the original Simple
Network Of Workstation (SNOW) idea
a nws.sleigh.Sleigh instance s coordinates a
set of "workers"

may be local, or on arbitrary nodes
uses ssh (or web, or ...) to start nodes

may send the same task to each worker
(s.eachWorker), and/or,
may shard tasks among them (s.eachElem)

also: s.imap, s.starmap, ...
[use SleighArgs, *not* "SleighArguments"]

38

Parallel Python
similar to Sleigh (but more direct, less fancy
iteration): message-based, supports both
SMP and clusters semi-transparently
class pp.Server supports ncpus, remote
nodes, stats/logging, and:

submit(func, args, depfuncs, modules,
 callback, callbackargs, group, globals)

returns callable that wait & returns results
also, for explicit use:

wait(group)

39

Q & A
http://www.aleax.it/accu_pyconc.pdf

40

? !

http://www.aleax.it/py4prog.pdf
http://www.aleax.it/py4prog.pdf

