Python Patterns of
Concurrent Programming

http://www.aleax.it/accu_pyconc.pdf

('7/()0’;1(‘””

http://www.aleax.it/py4prog.pdf
http://www.aleax.it/py4prog.pdf

The "levels’ of this talk

(—

S IConcurrency

Ry

GGoogle

Concurrency

® we want fo do several things "at once”

@ to react to "events" (mostly, but not
exclusively, "external” ones)

@ actions by the user(s] (on a UI, or...)
@ network events, I/0 completion, OS...
@ parsing, graph-walking, ...

@ to reduce “latency” (vs "throughput”)

@ to exploit many available resources (CPUs,
cores, computers...) towards a single goal
simultaneously

@ "parallel”, "distributed”, ...

3

Event-driven: the callback

@ the "callback” idea

@ shades of the Observer DP
@ pass a callable to "somebody”

@ in Observer: to the Observable target
@ the "somebody" stores it "somewhere"”

@ a container, an attribute, whatever
@ and will call it "when appropriate”

@ in Observer: on state-changes

@ in Event-driven: on meaningful “events"
@ also used in "customization” (e.g., sort)

4

Callback issues

@ what arguments are to be used on the call?
@ none: simplest, very rough

@ in ODP: the Observable object whose
state just changed

@ lets 1 callable observe several Obs'bles
@ or: 'description’ of state changes

@ saves 'round-trips’ to obtain them
@ in EDA: identifier or description of event

@ but -- what about other arguments (related
to the callable, not to the Obs'ble/Event)...?

(,'/ ()I;.('/

Fixed args in callbacks

@ functools.partial(callable, *a, **kw)
@ pre-bind any or all arguments
@ however...
@ x.set_cb(functools.partial(f, *a, **kw))
@ VS

o x.set_cb(f, *a, **kw)

@ ...having the set-callback itself accept (and
pre-bind) arguments is far nea’rer/hand|er

@ sombunall' Python callback systems do that

l: Robert Anton Wilson (500qgl

Callback "dispatching”

® what if more than one callback is set for a
single event (or, Observable)?

@ remember and call the latest one only
@ simplest, roughest
@ remember and call them all
@ LIFO? FIFO? or...?
@ how do you _remove__ a callback?
@ can one callback preempt others?
@ can events (or state changes) be "grouped™?
@ use object w/methods instead of callable

(o (),"L

7

Callbacks and Errors

@ are "errors events like any others?

@ or are they best singled-out?
http://www.python.org/pycon/papers/deferex/

® the Deferred pattern: one Deferred holds...
® N "chained" callbacks for "successes' +
® M "chained" callbacks for “errors”

@ each callback is held WITH opt *a, **kw

@ plus, argument for “event / error
identification” (or, result of previous
callback along the appropriate “chain”)

Scheduled callbacks

@ standard library module sched

@ s = sched.Sched(timefunc, delayfunc)
@ e.g, Sched(time.time, time.sleep)

@ evt = s.enter(delay, priority, callable, arg)
@ or s.enterabs(time, priority, callable, arg)
@ may s.cancel(evt) later

@ s.run() runs events until queue is empty (or
an exception is raised in callable or
delayfunc: it propagates but leaves s in
stable state, s.run can be called again later)

(-00al

Some other Python callbacks

@ for system-events:
@ atexit.register(callable, *a, **k)
@ oldhandler = signal.signal(signum, callable)

@ sys.displayhook, sys.excepthook,
sys.settrace(callable)

@ readline.set_startup_hook,
set_pre_input_hook, set_completer

@ parsing, timing, debugging, customization, ...

10

Event-driven: "the Loop"

@ demultiplex external events coming into the
program from several distinct channels

o select.select, select.poll (+ 3rd-party
ones: python-epoll, Py-Kqueue, ...)

@ win32all.MsgWaitForMultipleEvents

@ "register” event sources (fd's, windows,
kernel sync objects,)

@ call the demux function (maybe w/timeout)

@ returns set of events occurred (or, times
out, allowing optional further “polling™...)

(-00al

11

Dispatching Events

@ the "Event Loop" per se bottlenecks"
events into 1 spot (+ others if "modal")

@ worst solution: if/else tree at that spot

@ better: register callbacks for "specific”
events (by type, source, or ...)

@ & add to the "Event Loop" the registry
and dispatching of callbacks it affords

@ Loop + Registry/Dispatching == REACTOR

@ http://www.cs.wustl.edu/~schmidt/PDF/
reactor-siemens.pdf

12

http://www.cs.wustl.edu/~schmidt/PDF/reactor-siemens.pdf
http://www.cs.wustl.edu/~schmidt/PDF/reactor-siemens.pdf
http://www.cs.wustl.edu/~schmidt/PDF/reactor-siemens.pdf
http://www.cs.wustl.edu/~schmidt/PDF/reactor-siemens.pdf

asyncore

@ asyncore.loop(timeout, use_poll, map, count)

@ only supports events handled by select
(or poll, if use_poll is true)

@ also does dispatching (so: a reactor)

@ items in map (or asyncore.socket_map)
must have methods readable, writable, all
of socket's methods, plus handle_* ones...

@ normally subclass asyncore.dispatcher

@ also handles add-to-the-map, wraps
socket methods

@ to buffer: dispatcher_with_send
@ for files (Unix only): file_dispatcher

(,'/ ()I;.('/

13

asyncore Echo srv (1/2)

1mport asyncore

class MainServerSocket(asyncore.dispatcher):

def __init__(self, port):
asyncore.dispatcher.__init__(self)
self.create_socket(socket.AF_INET,

socket.SOCK_STREAM)

self.bind(('',port))
self.listen(5)

def handle_accept(self):
newSocket, address = self.accept()
SecondaryServerSocket(newSocket)

14

asyncore Echo srv (2/2)

class SecondaryServerSocket(
asyncore.dispatcher_with_send):
def handle_read(self):
receivedData = self.recv(8192)
1f receivedData:
self.send(receivedData)

else:
self.close()

MainServerSocket(8881)
asyncore. loop()

15

Twisted Core

@ twisted.internet.reactor module
@ IReactorCore: "system events”, run, stop

@ IReactorTCP: listen/connect w/Factory
(ServerFactory, ClientFactory)

@ Factory itf has buildProtocol method
@ IProtocol has dataReceived method

@ many other reactor itf's: FDSet, Process,
SSL, Threads, Time, UDP, UNIX

@ many implementations: select, poll,
KQueue, Win32 (WFMO/IOCP) + many
with GUI event-loops integration

(,'/ (),

16

'(/

Twisted Echo server

from twisted.1internet import protocol,
reactor

class EchoProtocol(protocol.Protocol):
def dataReceived(self, data):
self.transport.write(data)

factory = protocol.Factory()
factory.protocol = EchoProtocol

reactor.listenTCP(8881, factory)
reactor.run()

17

Interleaving execution

@ traditional sequential processing:
data = get_all_data()

results = process_all_data(data)
show_all_results(results)
@ an "interleaved” approach:

finished = False

while not finished:
d, f = get_some_data()
r, f = process_some_data(d, f)
finished = show_some_results(r, f)

@ reduces latency (may worsen throughput)
o AKA "pthreads", "fibers", "tasklets"...

(o ()r"(/

18

Interleaving Issues

@ each component must:
@ restore its previous state (if any),
@ do "some” work (not TOO much!),
@ save its current state (if not finished),
@ yield control to "other components”
@ note: MUST vield if risks blocking (I/0...

@ clear pluses: programmer has complete
control, works great w/event-driven
approaches, no “surprises’, ...

@ issues: lots of work, some "delicate” points

S’

19

Python interleaving

@ may use classes (tfo group state & behavior)
® generators are very handy for this

@au’roma’rlcally preserve state” including
"point of execution” at yield time

@ yield is now "bidirectional” (expression)
@ no standard "scheduling” conventions (yet)

@ but, cfr http://mail.python.org/pipermail /
python-list/2007-May/438370.html

@ don't confuse microthreading, coroutines,
and continuations...

20

http://mail.python.org/pipermail/python-list/2007-May/438370.html
http://mail.python.org/pipermail/python-list/2007-May/438370.html
http://mail.python.org/pipermail/python-list/2007-May/438370.html
http://mail.python.org/pipermail/python-list/2007-May/438370.html

Stackless Python

o tasklets (AKA microthreads): wrap a
function for interleaving purposes

@ supply critical sections, scheduling
(cooperative _or_ even preemptive...)

@ channels: let tasklets send/receive data
@ intrinsically cooperate w/scheduling

@ serialization (pickling/unpickling) for
checkpointing, transfering tasks, ...

@ popular in games, online and non (EVE
Online, Mythos, Sylphis 3D, ...) for speed
and convenience

(5009l

21

"Real” Threads

@ the threading module (NOT legacy thread)

@ uses underlying OS (preemptive) threading
facilities (for CPython; underlying _VM_
threading facilities for Jython, IronPython)

@ CPython adds a Global Interpreter Lock
(GIL) to ease integrating non-thread-
aware/safe external C libraries

@ C-coded extensions may explicitly release
the GIL ("allow threading")/re-acquire it

@ semantics constrained by cross-platform
needs (priorities, thread-interruption...)

(o ()r"(/

22

Threads & "Atomicity"

will this work? why, or, why not?

d = {}; fd = openC F1l.ExE")

def f():
for L 1n fd:
k, v = L.split()[:2]
dik] = v

tl = threading.Thread(target=f)
t2 = threading.Thread(target=f)
tl.start(); t2.start()
tl.jo1n(); t2.j01n()

23

"Thread-safe" iterator

def tsiter(it, L=None):
1f L 1s None:
L = threading.Lock()
1t = LEepCit)
while True:
with L:
yield 1t.next()

NB: 1n 2.5, this needs adding a:
from __future__ 1import with_statement

(() I'«

24

"Thread-safe’ mapping

class tsdict(dict):
def __init. (selfi; *a,. At
self.L = threading.lLock()
with self.L:
dict:i nput wlsel foora, Tl
def __setitem__(self, k, v):
with self.L:
dict.__setitem__(self, k, v)
def __getitem__(self, k):
with self.L:
return dict.__getitem__(self, k)

25

Big risks with this...

@ not covering _all_ "atomicity” needs:

@ e.g.: 'for K in tsiter(tsd): <body>" STILL
needs "NO ALTERATION" to tsd
throughout the loop (what ensures this?)

@ the more, finer-grained locks are around,
the higher the risk of deadlocks:

@ T1 gets lock A then waits on lock B,
@ T2 gets lock B then waits on lock A...

@ race conditions and deadlocks are the worst
kinds of bugs (hard to reproduce, hard to
test for, very hard to debug, ...)

(-00al

26

A more structured approach

@ make every "shared resource” either
UNCHANGING during multitasking,

@ or, have it OWNED by ONE dedicated
thread (only one changing OR accessing it)

@ every other thread requests operations on
the shared resource by sending MESSAGES
to the dedicated owner-thread (and may
wait for a result-message if applicable)

@ Queue.Queue is the infrinsically-threadsafe
communication structure for messages from
thread to thread (work-request, result)

(-00al

27

TS file-read-to-Queue

a "self-activated" owner-thread variant

lines = Queue.Queue(N)
def tsread(fn, linequeue):

with open(fn) as fd:

for line 1in fd: linequeue.put(line)
t = threading.Thread(target=tsread,
args=C"'fil.txt', lines))

t.setDaemon(True)
t.start()

28

TS "dict service" (1/2)

a more classic "dedicated work thread"

def tsmapping(wrqg, d):
while True:
op, k, v, rq = wrqg.get()
1f op=='"set' d[k] =

elif o =='keys = d.keys()
elif op=="1n' = k 1n d
else: v = d.get(k, V)

1f rqg: rqg.put(v)

29

TS "dict service" (2/2)

...and a little syntax sugar on top...:
class tsdict(object, UserDict.DictMixin):
def __1init ffself, *a, ok
self.wrg = Queue.Queue(N)
t = threading.Thread(target=tsmapping,
args=(self.wrqg, dict(*a, **k)))
t.setDaemon(True); t.start()
self.rsgq = Queue.Queue()
def keys(self):
self.wrqg.put(('keys',"'"',"",self.rsq))
return self.rsq.get()
...__getitem getitem__,... Corelil

— e 9 ——

Granularity & Performance

@ each context-switch among threads has a
performance cost (potentially in both
latency and throughput)

@ so does each locking (and Queue.Queue
intrinsically does locking, too)

@ consider "batching things up” a bit
@ compromise betw. throughput & latency

@ ideal points for context switches: where
they would occur anyway (syscalls, I/0)

@ avoid polling; consider thread-pools; mix
and match threads w/event-driven ops; ...

(5009l

31

Processes

@ heavier/costlier than threads (but not by
much, in Linux, Solaris, Mac OS X, BSD, ...)

@ better isolation is a good guard vs bugs
(and, can "drop privileges" &c for security)

@ no GIL -- use all CPUs/cores implicitly

@ "resource sharing’ goes a bit against the
grain (possible, but "message-style” IPC
mechanisms are generally preferable)

@ IPC via sockets affords nearly unbounded
potential scalability...

@ see http://pypi.python.org/pypi/processing
(50041

32

"Orchestrating” concurrency

@ Twisted is good at orchestrating all this...
@ focus on event-driven operations
@ strong support for threads & processes
@ particularly strong at networking

@ some support for interleaving ("Flow" now
deprecated, use task.Cooperator class)

@ highly structured (chiefly via interfaces)

@ lots of "moving parts” (alternatives, details,
docs, abstractions...)

@ Is there something simpler to use...?

33

NetworkSpaces

@ close kin to Linda / tuple spaces
@ Python implementation uses Twisted
@ clients also available for R (and Matlab)
@ dual-licensed open source (GPL or Pro)
@ 5 primitives: store, fetch{Try;, find{Try}
o store/fetch like Queue's put/get
@ multiple "slots" w/arbitrary name per ws
@ "find" for non-removing read access

@ works with Sleigh (to distribute and load-
balance work across cores/CPUs/nodes)

34

nws basics

@ you need to be running an nws server

@ there's only one kind (Python+Twisted)

@ may run as a daemon

@ may monitor it through a web itf

@ optional, helpful "pybabelfish” daemon

@ must have nws clients installed on all hosts

@ may be Python, R, or Matlab ones

@ language interop via ASCII strings, only

@ within 1 language, any serializable obj OK

(,'/ ()I;.('/

35

>>>
>>>
>>>
>>>
>>>

>>2>

An NWS "server"

from nws 1mport client
ws = client.NetWorkSpace('primes')
1mport gmpy
pr = [gmpy.mpz(2)]
def store_prime(n):
while len(primes)<=n:
pr.append(pr[-1].next_prime())
ws.store('prime’', int(primes[n]))

while True:
store_prime(ws.fetch('n'))

36

An NWS "client”

>>> from nws import client
>>> WS = client.NetWorkSpace('primes')
>>> def getprime(n):

pr.store('n', n)

return pr.fetch('prime')

>>> print [getprime(n) for n in range(23)]
[2, 3, .5, ¢, " 1 =13, 17, 19 78 - 2O
37, 41, 43, 47, 53, 59, 61, 67, 71, 73,
79, 83]

37

Sleigh

@ an enhancement of the original Simple
Network Of Workstation (SNOW) idea

@ a nws.sleigh.Sleigh instance s coordinates a
set of "workers”

@ may be local, or on arbitrary nodes
@ uses ssh (or web, or ...) to start nodes

@ may send the same task to each worker
(s.eachWorker), and/or,

@ may shard tasks among them (s.eachElem)
@ also: s.imap, s.starmap, ...

@ [use SleighArgs, *not* "SleighArguments"]

(y (),l'.(l

38

Parallel Python

@ similar to Sleigh (but more direct, less fancy
iteration): message -based, supports both
SMP and clusters semi-transparently

@ class pp.Server supports ncpus, remote
nodes, stats/logging, and:

submit(func, args, depfuncs, modules,
callback, callbackargs, group, globals)

@ returns callable that wait & returns results

@ also, for explicit use:
wait(group)

39

Q& A

http://www.aleax.1t/accu_pyconc.pdf

40

http://www.aleax.it/py4prog.pdf
http://www.aleax.it/py4prog.pdf

