
©2006 Google -- aleax@google.com

Technical Management Of
Software Development

Experiences, Tips and Ideas
Alex Martelli

http://www.aleax.it/accu_tmsd.pdf

Is there a silver bullet?
...one single way to slay all monsters...?

2

The talk is NOT about...
(not at all about) strategic/executive management

business plans, finance, strategic vision...
(mostly not about) project management

plans, schedules, budgets, iteration
(hardly about) technologies/methods/tools

languages, OSs, frameworks, ...
however, I assume some level of Agility:

neither rigid Waterfall,
nor utter Chaos !-)

3

Agile vs Waterfall vs Chaos
Waterfall: plan, plan, plan, plan, plan, DO!
Chaos: do, do, do, oops, undo, do, redo, ...
Agile: plan, do, adjust; plan, do, adjust; plan,
do, adjust; ...

successful software projects must be like
that to some extent
Agile methods try to extract the aspects
that work and apply them with discipline
and match with coding/testing techniques
which best suit the reality at hand

4

(Unlikely?) Agile Inspiration...

5

...a process which brings order out of nothing
but ourselves; it cannot be attained, but it
will happen of its own accord, if we let it.

(btw): Strategic Agility

6

...traditional approaches to strategy
often collapse in the face of
rapidly and unpredictably changing
industries ... because they over-
emphasize the degree to which it
is possible to predict ...

... change is the striking feature of
contemporary business ... the key

strategic challenge is managing
that change.

This talk IS about...
communicating my experiences (at Google
and before) and related reflections and tips

not anecdotes, but the gist of them
about ONE successful way to do technical
management of software development
other ways might also work, of course!

disputing some very popular theses
while recommending some books that
defend those theses!-)

exchange of experiences, tips, reflections
(both during the talk itself & in Q&A)

7

...but, the best reason...:

8

You teach best
what you most
need to learn.

The Stool of Development

9

needs three good, sturdy legs:

great strategic
leadership

excellent developers

effective
management

right intention

right action

right endeavour

What makes strategic leaders great?

10

deep vision + sharp action on business
models, technologies, partnerships, staffing,
agility: strategy + execution
mutual trust, interaction and respect with
managers and developers (and operations,
and sales, and marketing, and ...)
courage, integrity, humility, realism, pride,
optimism, prudence

1. they do their (difficult) job well

2. they let me do mine!

What makes developers excellent?

11

great at design, coding, testing, debugging;
mastery of algorithms, languages, tools,
technologies, frameworks, the codebase:
i.e., technical excellence
mutual trust, interaction and respect with
managers and each others (and UI, QA, ...)
courage, integrity, humility, realism, pride,
optimism, prudence

1. they do their (difficult) job well

2. they enable me to do mine!

How do you get those?!

12

Every manager dreams of having great
strategic leaders and excellent developers,
but, how do you get them?
(1) luck (e.g.: you happen to work at Google!-)
(2) choice (e.g.: come to work at Google!-)
(3) grow them (not mutually exclusive w/1-2!)

trust, in particular, always needs
nurturing (more anon...)
you can always teach a little
you can always learn a lot

Two scary monsters...

13

Developing the wrong software

Developing the software wrong

10%

40%
50%

Leaders Manager
Developers

50%
40%

10%

Percentages of blame

One way to learn...

14

...is via good books -- and, there are many!

Ars longa, vita brevis...

15

more books than one can make time for!

Learning from books

one always reads books critically
reading many divergent ones helps!-)

one always sifts them through experience
try new tips & ideas out incrementally

“Big Bang” isn’t just risky (and it is!),
it also clouds perception & analysis

use mostly your experience, but also --
use my experience, hers, his, ...

NB: learning from tech talks, workshops,
courses, needs much the same approach!-)

16

as we all know, requires the right approach:

One widespread opinion

17

“Once you have four or more
people in your group, you can’t

perform technical work and still
be a great manager.” (Wk 6)

“Managers are not usually part
of the teams that they

manage ... leadership just doesn’t
have much place here.” (Ch 23)

And a counterpoint to it

18

“Tech leads split their time
between development tasks
and management tasks, not
working exclusively in either
realm.” (T.15: Let a tech lead)

At Google, we distinguish pure “tech
leads” (engineers who manage a project)
from “uber tech leads” and “tech leads/
managers” (“highly technical managers” aka
HTM), but both can meet this definition.

One way to be an HTM

19

say that manager M is a technical peer of
the developers (design, code, debugging...)
M can nurture mutual trust, interaction and
respect by and for the developers by
deploying him/herself as a “wildcard
technical resource”

not for the “fun” tasks, but, rather,
for urgent ones requiring an extra pair of
hands brain hemispheres right now,
be they fun or (preferably!-) chores

many objections should come to mind here...

Wait, but, what about...

20

If you’re following critically, you may have
one or more of the following objections...:
1. what about Brooks’ Law?
2. where does one find the time!?
3. shouldn’t a manager always delegate?
4. must be neglecting “real” mgmt work!
5. it’s just a waste of technical talent
6. too many interrupts, you’d never get into

“the flow state”!
7. ...supply your own objections...

1. Brooks’ Law

21

“Adding programmers to a late
software project makes it later”
Yes, but: everybody always omits
the immediately-preceding
qualification: “Oversimplifying
outrageously, we state”...!-)
also: just don’t let it become late!-)

Based on extra time for extant programmers to bring
new ones up to speed + extra communication overhead

The HTM is always essentially up-to-speed & always
communicating, so: no extra overhead ! no Brooks’ Law

2. Where to find the time?

22

NOT in working incredibly long hours
aim for 40 !
settle for 45 "
50 is right out #

(Note: I mean actual work time, net of [e.g.]
blogging, snacking, surfing, lunches...!-)

nor in extensive telecommuting (face-to-
face is still the most effective form of
communication, and communication is one of
the most crucial parts of any HTM’s job)
time management works, when done right

Time Management for ...

23

it’s not just for SAs:
at least 80/90% is good for
developers and HTMs
esp. w/operational duties

Limoncelli presents the gist at:
http://video.google.com/videoplay?
docid=7278397109952382318

key ideas: focus & interrupts,
single TODO list & its handling,
building routines, prioritization

I can offer a few extra, HTM-specific tips...

Time Mgmt 101 for HTMs

24

schedule many, regular, short meetings
never a problem if a meeting ends early
cancelable at last minute in emergencies
always, promptly take “sidelines” offline
punctuality saves time for everybody

don’t schedule meetings back-to-back!
always think about who should be there

easy but wrong to slip into a “when in
doubt, invite them” mentality

always be ready to snatch opportunities
laptop, book, Blackberry/PDA, WWFY

Time Mgmt 102 for HTMs

25

consider each piece of work specifically
does it really need to be done at all?
if so, am I the best person to do it?
&, when should it optimally be done?

don’t let emergencies emerge!
a stitch in time saves 9.4247779677

schedule ~50% of your “discretionary” time
each week for not-(yet!-)-urgent “fillers”

a wise general strives to keep a reserve
can be rescheduled for emerging work
don’t wait until they are urgent!

Military Metaphors

26

“While heeding my profitable
advice, avail yourself also of any
helpful circumstances, over and
beyond ordinary rules.” (v. 16)

NB: a few generals lost battles by
never committing their reserves!-)

Planning is everything, plans are nothing (von Moltke)

No plan survives contact with the enemy (von Moltke)

Extremely popular:

27

highly non-specific (manager
oriented, but not hi-tech)
has many enthusiasts, a
“movement”
http://www.davidco.com/
key ideas: mind like water,
single in-basket, highly
structured flow, action steps,
“two minutes rule”

doesn’t really work for me, but, works well for many!

3. Shouldn’t a mgr delegate?
sure, but, delegate what?

delegating doesn’t remove responsibility
always stay up to speed on all projects!
you must trust your developers to do
what’s right -- but, fulfill your part of
the bargain, to enable them to do it!

once developers see that your tech
contributions are excellent,

and trust you to properly give credit,
they’ll want you involved AMAP!

28

Trust...

29

Trust...

30

The satisfaction we derive from being connected
to others in the workplace grows out of a
fundamental human desire for recognition.

Trust...

31

is mutual, and built up over time
you must earn & deserve developers’ trust

technical ability & “technical currency”
true, not faked, interest in them as
individuals, within and outside work
always give recognition and credit!

they must earn & deserve yours
tech skills, integrity, goal-focusing
but: always start “trusting by default”!

pre-req: hire VERY selectively!-)

Trust begins at home

32

to be worthy of others’ trust, you must
first be worthy of your own!

This above all: to thine own self be true,
And it must follow, as the night the day,
Thou canst not then be false to any man
don’t tell yourself little white lies...!
“above all, don’t fool yourself, don’t say
it was a dream, your ears deceived you:
don’t degrade yourself with empty hopes
like these” (C. Cavavy, “The god forsakes Anthony”)

More about Trust...

33

4. Neglecting “real” mgmt?
there is no “realer” management work than
this set of tasks: nurturing trust, caring for
your people, helping teams jell, keeping
careful track of your projects, helping your
people grow, focusing on goals & priorities
nothing wrong with writing some unit-tests,
critiquing a design, or slogging through a
deucedly hard debugging session, since it
helps you accomplish all of these tasks!

besides, this way we get to have some
hacking fun, too: avoids US burning out!-)

34

No mere cogs in the wheel
learn all you can about your developers’
specific, individual strengths & weaknesses

particularly TLs, if any, but not just them
play to their strengths
shield their weaknesses, but also...:

help them to outgrow weaknesses
coaching, lessons, books, pairing, ...
run a marathon, not a 100-m dash!

making unreasonable demands can burn
them out (watch out for burnout!!!), but...

making only fully reasonable demands
provides no challenge (stretch goals)

35

5. Waste of tech talent?
it’s not wasting, but leveraging it!
in some places management is only for
those who have nothing more to contribute
technically... but not in successful shops!-)
“but isn’t leverage high only in design”?

no way!
“the devil is in the details”
and where’s a devil to be fought, that’s
where the best exorcists are needed!-)

36

6. Interrupts and Flow
read Limoncelli re managing interrupts
you still have to deal with many of them

keep yourself out of critical-paths (or
provide guaranteed alternate routing;-)
learn to tell what can wait 1 hour
learn to “push something on the stack”,
provide immediate attention to s/thing
else, pop the stack and go right back

in the end, it’s possible that one just isn’t
designed for multitasking -- management
always requires a lot of it, though!

37

For many diverse tips

38

you have to make a schedule... no programmer
wants to... most are only doing it because their
boss made them do it, halfheartedly, and nobody
actually believes the schedule...

Scheduling and Planning

39

heed Joel’s advice: appropriate technology
is a spreadsheet (or whiteboard+stickies, or
index cards...), not complex PERT/GANTT charts

pick very fine-grained tasks (to combat
developers’, and your own, optimism!-)
schedule vacations, holidays, training, sick
days (proactively fight to avoid burnout!)

heed Cohn’s advice: estimate size, derive
duration (&, size in arbitrary units * velocity)

Appropriate methods
Agile: it’s not only a good idea, it’s a cool
and trendy buzzword!-)

explore the whole space, together with
your developers
but, strive for consistency among your
projects (or, you’ll go crazy!-)
retrospect & meta-refactor mercilessly

controversy alert;-)...: some technologies
are somewhat “more agile” than others
(Ruby > Python > Java/C# > C++) -- choose
wisely!

40

Appropriate tools
what needs to be uniform for teamwork?

code style, naming, whitespace, idioms
OS, libraries, test framework, source-
code control, issue tracking system
but NOT tools (editor, debugger, IDE...)

the most important tool: a good source-
code control system

& accompanying scripts
continuous build, automatic tests, ...

2nd most important: issue-tracking system
that integrates well with the SCCS

41

Is there a silver bullet?
no, but many needles may keep ‘em at bay!

42

And one last advice...
control your dependencies...
or, they will control you!

43

44

Q?
A!

45

"The Timeless Way of Building", C. Alexander
"Competing on the Edge", S. Brown, K. Eisenhardt

"Illusions", R. Bach
"Behind Closed Doors", J. Rothman, E. Derby

"Peopleware", T. DeMarco, T. Lister
"Agile & Iterative Development", C. Larman

"Ship It!", J. Richardson, W. Gwaltney
"Agile Estimating and Panning", M. Cohn

"Object Solutions", G. Booch
"Agile Software Development", R. Martin

"The Psychology of Computer Programming", G. Weinberg
"The Limits of Software", R. Britcher

"Dreaming in Code", S. Rosenberg
"Project Management", S. Berkun
"Software Runaways", R. Glass

"Working Effectively with Legacy Code", M. Feathers
"Mintzberg on Management", H. Mintzberg

"FIT for Developing Software", R. Mugridge, W. Cunningham
"Death March", E. Yourdon

"The Mythical Man-Month", F. Brooks
"Time Management for System Administrators", T. Limoncelli

"The Art of War", Sun Zi
"How to Lose a Battle", B. Fawcett

"Getting Things Done", D. Allen
"Trust", F. Fukuyama

"The Evolution of Cooperation", R. Axelrod
"The Speed of Trust", S. Covey

"The Origins of Virtue", M. Ridley
"Joel on Software", J. Spolski

