Masquerading and Adaptation

i”’ Design Patterns in Python

Alex Martelli <alex@strakt.com>
% . O'REILLY’

JULY 26-30, 2004
PORTLAND, OR

© 2004 AB Strakt 1

p—

L.“
"fair" to "excellent" grasp of Python
and OO development

"none" to "good" grasp of Design
Patterns in general

want to learn more about: DPs,
masquerading, adaptation, DPs for
Python, DP/language issues

© 2004 AB Strakt 2

—

A..r
Design Patterns, including "myths and realities”
the Holder and Wrapper Python idioms
the Adapter DP
the Facade DP
the Currying DP and Python callback systems
the Decorator DP
t

ne Protocol Adaptation proposal (PEP 246)

...and, iff time allows...:

the Proxy DP
the Bridge DP

© 2004 AB Strakt 3

g\; Next up...:

= Design Patterns, myths and realities
= Holder and Wrapper

= Adapter

= Facade

= Currying

= Decorator

= Protocol Adaptation (PEP 246)

= Proxy

= Bridge

© 2004 AB Strakt 4

p—

) '.
S
rich, thriving subculture of the OO
development culture

Gamma, Helms, Johnson, Vlissides,
"Design Patterns”, Addison-Wesley

more introductory: Shalloway, Trott, "Design
Patterns Explained" (AW)

PLoP conferences & books

© 2004 AB Strakt 5

—

y_ i

Design Patterns risked becoming
a "fad" or "fashion" recently

cause: the usual, futile search for
the "silver bullet"...!

)

let's not throw the design patterns
out with the silver bullet!

© 2004 AB Strakt 6

DPs are not independent from
language choice, because: design
and implementation must interact
(no to "waterfall"...!)

in machine-code: "if", "while",
"procedure” ... are patterns!

HLLs embody these, so they are
not patterns in HLLs

© 2004 AB Strakt 7

A“‘
many DPs for Java/C++ are
"workarounds for static typing"

cfr Alpert, Brown, Woolf, "The DPs
Smalltalk Companion” (AW)

Pythonic patterns = classic ones,
minus the WfST, plus (optionally)
exploits of Python's strengths

© 2004 AB Strakt 8

p—

y_ i

formal-language presentation
along a fixed schema is useful

it is not indispensable
mostly a checklist "don't miss this”
and a help to experienced readers
nor indeed always appropriate
always ask: who's the audience?

© 2004 AB Strakt 9

\

;H
name, context, problem
forces, solution, (examples)
results, (rationale), related DPs

known uses: DPs are discovered,
not invented!

DPs are about description (and
suggestion), not prescription

© 2004 AB Strakt 10

Design Patterns are not "silver bullets"
they are, however, quite helpful IRL

naming, by itself, already helps a lot!
like "that guy with the hair, you know, the Italian..."
vs "Alex"
even when the DPs themselves dont help,
study and reflection on them still does

"no battle plan ever survives contact with the enemy"
and yet drawing up such plans is still indispensable

© 2004 AB Strakt 11

\

Masquerading: an object [==

|

— 1
=l

"pretends to be" (possibly /;.

2T\

fronts/proxies for...) another

Adaptation: correct "impedance
mismatches"” between what's
provided and what's required

© 2004 AB Strakt 12

LA

ar Next up...:

= Design Patterns, myths and realities

= Holder and Wrapper

= Adapter

= Facade

= Currying

= Decorator

= Protocol Adaptation (PEP 246)
= Proxy

= Bridge

© 2004 AB Strakt

13

—

P

Holder: object O has subobject S as an
attribute (may be a property), that's all

use as self.S.method or 0.S.method

Wrapper: holder (often via a private
attribute) plus delegation (use 0.method)
explicit: def method(self, *a, **k):
return self. S.method(*a,**k)
automatic (typically via getattr)...:

def getattr (self, name):

return getattr(self. S, name)
© 2004 AB Strakt 14

—

P

Holder: simpler, more direct and immediate
low coupling O & S

high coupling between O's clients and S (and O's
internals...), lower flexibility

Wrapper: slightly fancier, somewhat indirect

high coupling (and hopefully cohesion...!) O <& S
automatic delegation can help with that

Wrapper helps respect "Demeter's Law"
basically "only one dot" (or, "not too many dots"!-)

© 2004 AB Strakt 15

P~

ar Next up...:

= Design Patterns, myths and realities

= Holder and Wrapper

= Adapter

= Facade

= Currying

= Decorator

= Protocol Adaptation (PEP 246)
= Proxy

= Bridge

© 2004 AB Strakt

16

—

y
AN
N

—> MRLxGS |«

P

2

e

2%

« Fe318 (1% Lotg)

R

supplier code o provides different protocol
S (with a superset of C's functionality)

adapter code o "sneaks in the middle":

to v, o is supplier code (produces protocol C)
to o, « is client code (consumes protocol S)
"inside”, o implements C (by means of calls to S on o)

NB, "interface" vs "protocol" == "syntax" vs

"syntax + semantics + pragmatics"

© 2004 AB Strakt 17

—

M,

‘Lw

C requires: method foobar (foo, bar)
S provides: method barfoo(bar, foo)
a non-0O0 context is of course possible:

def foobar(foo,bar):

return barfoo(bar, foo)

in OO context, say we have available as o
class Barfooer:

def barfoo(self, bar, foo):

© 2004 AB Strakt 18

—_——

L ==L Sl
per-instance, by wrapping & delegation:
class FoobaringWrapper:
def 1init (self, wrappee):
self.w = wrappee
def foobar(self, foo, bar):

return self.w.barfoo(bar, foo)

foobarer = FobaringWrapper (barfooer)

© 2004 AB Strakt 19

—

-
per-class, by subclassing & self-delegation:

class Foobarer (Barfooer):
def foobar(self, foo, bar):

return self.barfoo(bar, foo)

foobarer = Foobarer (some,init,params)

© 2004 AB Strakt 20

—

.

A.;‘
shelve: adapts "limited dict" (str keys
and values, basic methods) to fuller dict:

non-str values via pickle + UserDict.DictMixin

socket. fileobject: socket to filelike
has lot of code to implement buffering properly

doctest.DocTestSuite: adapts doctest's
tests tO unittest.TestSuite

dbhash: adapts bsddb tO dbm
StringIo: adapts str Or unicode to filelike

© 2004 AB Strakt 21

real-life Adapters may require lots of code

mixin classes help in adapting to rich
protocols (by implementing advanced
methods on top of fundamental ones)

Adapter occurs at all levels of complexity,
from tiny dbhash to many bigger cases

in Python, Adapter is not just about classes
and their instances (by a long shot...)

© 2004 AB Strakt 22

—

L e
Design Patterns, myths and realities
Holder and Wrapper
Adapter
Facade
Currying
Decorator
Protocol Adaptation (PEP 246)
Proxy
Bridge

© 2004 AB Strakt 23

ar DP "Facade”
= existing supplier code o provides rich,
complex functionality in protocol S

= we need a simpler "subset" C of S

= facade code ¢ "sneaks in front of" o
implements and supplies C by calling S

i uu..nn .m“mm

=N

© 2004 AB Strakt 24

b Python toy-example Facade

class LifoStack:
def 1init (self):
self. stack = []
def push(self, datum):
self. stack.append(datum)
def pop(self):
return self. stack.pop()

© 2004 AB Strakt 25

—

y_ i

Adapter is mostly about supplying a "given"
protocol required by client-code

sometimes, it's about homogeinizing existing suppliers
in order to gain polymorphism

Facade is mostly about simplifying a rich
interface of which only a subset is needed

of course they do "shade" into each other

Facade often "fronts for" several objects,
Adapter typically for just one

© 2004 AB Strakt 26

—

M,

A.;‘
asynchat.fifo facades for 1ist
dbhash facades for bsddb

yes, I did also give this as an Adapter known-use... ©

sets.Set mostly facades for dict
also adds some set-operations functionality

oueue facades for 1ist + lock

os.path: basename and dirname facade for
split + indexing; isdir &c facade for
os.stat + stat.S ISDIR &C

© 2004 AB Strakt 27

real-life Facades may contain substantial
code (simplifying the protocol is key...)

interface-simplification is often mixed in
with some small functional enrichments

Facade occurs at all levels of complexity,
from tiny os.path.dirname to richer cases

inheritance is never really useful here
(inheritance only "widens”, can't "restrict")

© 2004 AB Strakt 28

—

O S
Design Patterns, myths and realities
Holder and Wrapper
Adapter
Facade
Currying
Decorator
Protocol Adaptation (PEP 246)
Proxy
Bridge

© 2004 AB Strakt 29

callables (functions, methods, ...) play a
very large role in Python programming

they're first-class objects
Python doesn't force you to only use classes...!

a frequently needed adaptation (may be
seen as facade): pre-fix some arguments

most often emerges in callback systems

widely known as the "Currying" DP
not a pedantically perfect name: DP names rarely are

© 2004 AB Strakt 30

the typical use case: for some object btn,
btn.setOnClick(acallable)...

will call acallable ()"when the button gets clicked"
but we have a function def foo(anumber): ..
how do we ensure a button click calls foo (23)?

btn.setOnClick(lambda: foo(23))

very similar issues if the callback is acallable(evt)
and we want it to call foo(evt, 23)

lambda €an do any sig-adaptation, but...

© 2004 AB Strakt 31

-
class Curry(object):
def 1init (self, £, *a, **k):
self.f, self.a, self.k = £, a, k
def call (self, *b, **kk):
d = self.k.copy/()

d.update(kk)
return self.f(*(bt+self.a), **d)

btn.setOnClick(Curry(foo, 23))

© 2004 AB Strakt 32

-t
def curry(f, *a, **k):
def curried(*b, **kk):
d = k.copy()
d.update(kk)
return f£(*(b+a), **d)
return curried
btn.setOnClick(curry(foo, 23))

+**xk w/lambda POSSible though a bit tricky:
lambda *b,**kk: f(*(b+a), **dict(k,**kk))

© 2004 AB Strakt 33

—

P

best way to design callback-settings in
Python: stash away extra args w/callable
def setOnClick(self, £, *a, **k):

then just use as: btn.setonclick(foo, 23)

Known uses:
atexit.register,urllib.addclosehook,
Tkinter.after

threading.Timer, sched.scheduler.enter,
optparse.Option (W/0 */** in signatures)

© 2004 AB Strakt 34

P~

ar Next up...:

= Design Patterns, myths and realities

= Holder and Wrapper

= Adapter

= Facade

= Currying

= Decorator

= Protocol Adaptation (PEP 246)
= Proxy

= Bridge

© 2004 AB Strakt

35

client code y requires a certain protocol C
supplier code o provides exactly protocol C

however, we also want to insert some

small addition or semantic modification
quite possibly "pluggable"” in/out during runtime

decorator code d "sneaks in the middle":

O wraps o, both consumes and produces C
may intercept, modify, (add a little), delegate, ...
Yy uses 9, just as it would use o

© 2004 AB Strakt 36

!:E Python toy-example Decorator

class uppercasingfile:
def init (self, *a, **k):

self.f = file(*a, **k)
def write(self, data):

self.f.write(data.upper())
def getattr (self, name):

return getattr(self.f, name)

© 2004 AB Strakt 37

A.;“
gzip.GzipFile decorates file with
compression / decompression (using z1ib)

threading.RLock decorates thread.Lock
with re-entrancy (and "ownership" concept)
Semaphore, even Condition, also kinda decorators

codecs Stream classes decorate file with
generic encoding and decoding

© 2004 AB Strakt 38

"pure" decorator (without some small
additions to the protocol) is rare in Python

file/stream objects are favourite targets for
Python decorator uses

Decorator typically occurs in reasonably
simple cases

dynamic on/off snap-ability not often used
in Python (we have other dynamismes...)

© 2004 AB Strakt 39

g; Next up...:

= Design Patterns, myths and realities

= Holder and Wrapper

= Adapter

= Facade

= Currying

= Decorator

= Protocol Adaptation (PEP 246)
= Proxy

= Bridge

© 2004 AB Strakt

40

A.;“
given protocol (type, interface, ...) P and
object O, who knows how to adapt O to P...?
maybe O already "belongs to" / "implements" P, e.q.
isinstance (0O, P) when type(P) is type
maybe, given O's type/value, P can adapt O to itself,
e.g. P(0) could return a suitable value or wrapper

maybe P and O know nothing about each other, but a
3rd-party factory makePfromO (0O) could return a
suitable "adapter to P" wrapper or value

why should my application code care?!

© 2004 AB Strakt 41

—

y_ i

could be anything, really

a type

a zope.interface

a PyProtocols' Protocol

...something else again...

it doesn't really matter all that much!
should mean a Protocol, not just an
Interface (syntax+semantics+pragmatics,
not just syntax such as method names and

signatures)

© 2004 AB Strakt 42

—
A
.

def adapt(obj, prot, default=None):
"""NB: approximate semantics only!"""
1f type(obj) 1s prot: return obj
try: return adapt obj prot(obj, prot)
except TypeError: pass
try: return adapt prot obj(prot, obj)
except TypeError: pass
1f isinstance(obj, prot): return obj

return adapt byreg(obj, prot, default)

© 2004 AB Strakt 43

P

def adapt obj prot(obj, prot):

c = getattr(obj, ' conform ', None)
return c(prot)

def adapt prot obj(prot, obj):

a = getattr(prot, ' adapt ', None)
return a(obj)

def adapt byreg(obj, prot, default):
a = adapt regis.get((type(obj), prot))
try: return a(obj, prot)

except TypeError: return default
© 2004 AB Strakt 44

—

y_ i

_adapt regis {}

def reg adapt(atype, prot, factory):
~adapt regis[(atype,prot)] = factory

just for example... :

def by coercion(obj, prot):
return prot(obj)

reg adapt(str, int, by coercion)

now adapt('23',int) is 23,

but adapt('foo',int) raises

© 2004 AB Strakt 45

Mr Xer writes function x, requiring an
argument a which meets protocol p

but carefully uses a=adapt (a,P) on entry

Ms Yer writes function y returning an
instance q of type o

Mr Zer writes an adapter factory z, Q = P

application writer Aer, once z is registered,
just calls x(y()) w/o a care in the world

© 2004 AB Strakt 46

—

M,

The typical Python programmer is an integrator, someone
who is connecting components from various suppliers.
Often the interfaces between these components require an
intermediate adapter. Usually the burden falls upon the
application programmer to study the interfaces exposed by
one component and required by another, determine if they
are directly compatible, or develop an adapter.

Protocol Adaptation removes this burden!

© 2004 AB Strakt 47

—
A
.

def fooit(x):
1f isinstance(x,int): return fooI(x)
elif isinstance(x,...

replace fooit's body with something like:
adapt(x, fooer) (x)

with an initialization that goes roughly like:

class fooer: pass

def int foo(x): return fooI(x)

reg adapt(int,fooer,lambda *a:int foo)

© 2004 AB Strakt 48

—

y_ i

Phillip Eby's PyProtocols
http://peak.telecommunity.com/PyProtocols.html

several nifty little extras wrt PEP 246
speIIs reg adapt dS declareAdapter

also supports 1sar(foo) like adapt (foo, 1Bar)
only for instances of protocols.interface & C

uses "metaprotocols” extensively

warning: transitive adaptation

strong risk of "too much black magic"...
© 2004 AB Strakt 49

—

O e
Design Patterns, myths and realities
Holder and Wrapper
Adapter
Facade
Currying
Decorator
Protocol Adaptation (PEP 246)
Proxy
Bridge

© 2004 AB Strakt 50

client code Y would be just about fine with
accessing some "true" object T

however, some kind of issue interferes:

we need to restrict access (e.g. for security)
object T "lives" remotely or in some persisted form
we have lifetime/performance issues to solve

proxy object 1T "sneaks in the middle":

TT wraps T, may create/delete it at need
may intercept, check calls, delegate, ...

Yy uses TT, just as it would use T
© 2004 AB Strakt 51

[Python toy-example Proxy

class JustInTimeCreator:
def init (self, cls, *a, **k):
self. m = cls, a, k
def getattr (self, name):
if not hasattr(self, ' x'):
cls, a, k = self. m
self. x = cls(*a, **k)

return getattr(self. x, name)

© 2004 AB Strakt 52

.

A.;‘
Bastion used to proxy for any other object
in a restricted-execution context

shelve.Shelf's values proxy for persisted
objects (getting instantiated at-need)

xmlrpclib.ServerProxy pProxies for a
remote server (not for a Python object...)

weakref .proxy proxies for any existing
object but doesn't "keep it alive"

© 2004 AB Strakt 53

—

y .
a wide variety of motivations for use:

controlling access

remote or persisted objects
instantiating only at-need
other lifetime issues

correspondingly wide range of variations

Python's automatic delegation and "type
agnosticism" make Proxy a real snap

wrapping and proxying are quite close

© 2004 AB Strakt 54

—

O S
Design Patterns, myths and realities
Holder and Wrapper
Adapter
Facade
Currying
Decorator
Protocol Adaptation (PEP 246)
Proxy
Bridge

© 2004 AB Strakt 55

—

B,

—
& AKQJTO87

& AKQJTO87

¥ 62 ¥ 62
¢ 54 vs € 543
s /3 o 7/

"The Bridge World" January and
February 2000 issues, "How Shape
Influences Strength” by A. Martelli

© 2004 AB Strakt 56

Ll

&t ...00ps!...

|I
= ah, not that Bridge...?!

; o o
. el g lia _*_“.. - ~ i b oy,
ﬁf"* - .i--‘ ;Illn S P . fry *
. N %ﬂ B .

...that's [just a bit] more like it...

© 2004 AB Strakt 57

several (N1) realizations p of abstraction A,

may each use any one of several (N2)
implementations of functionality F

we don't want to code N1 * N2 cases

so we make abstract superclass A of all p
hold a reference R to (an instance of)
abstract superclass F of all (, and...

...make each p use any functionality from F
(thus, from a) only through R

© 2004 AB Strakt 58

& Why "bridge"?

© 2004 AB Strakt 59

L Python toy-example Bridge

class AbstractParser:
def 1init (self, scanner):

self.scanner = scanner

class ExprParser (AbstractParser):
def expr(self):
.t = self.scanner.next()...

...self.scanner.push back(t)...

© 2004 AB Strakt 60

—

P

often no real need for an abstract base
class for the "implementation”

just rely on signature-based polymorphism

Python inheritance is mostly about handy code reuse
each p can access self.R.amethod
directly, or you can proxy with a.amethod:

def amethod(self,*a):
return self.R.amethod(*a)
respects "Demeter's Law", see "Holder vs Wrapper"

© 2004 AB Strakt 61

T—

A.;“
htmllib. HTMLParser — Formatter
but: not really meant for subclassing

formatter: formatter — writer

NullFormatter / AbstractFormatter "unrelated"

NullWriter baseclass not technically "abstract"
(provides empty implementations of methods)

xml.sax. reader(parser) — handlers
multiple Bridge's -- one per handler

email. Parser -> Message

holds class, not instance
© 2004 AB Strakt 62

—

M,

SocketsServer Std library module:
BaseServer IS the abstraction

BaseRequestHandler iS the implementation
abstract-superclass

...with some typical pythonic peculiarities:

also uses mix-ins (for threading, forking, ...)

A holds the very class F, instantiates it per-request, not
just an instance of F

© 2004 AB Strakt 63

y .
Bridge occurs mostly for substantially
complex and rich cases

inheritance used only occasionally in
Python Bridge cases

when used, may be from a not-truly-abstract class

often reference R is to class, not instance

affords easy repeated instantiation
no KU found, but: state might be kept in a Memento

© 2004 AB Strakt 64

