

© 2004 AB Strakt 1

STRAKT

Click to Edit Title

Click to Edit

Presenter Information

O’Reilly Open Source Convention
July 26–30, 2004

Masquerading and Adaptation
Design Patterns in Python

Alex Martelli <alex@strakt.com>

July 26–30, 2004
Portland, OR

© 2004 AB Strakt 2

STRAKT

This talk's audience...:

 "fair" to "excellent" grasp of Python
and OO development

 "none" to "good" grasp of Design
Patterns in general

 want to learn more about: DPs,
masquerading, adaptation, DPs for
Python, DP/language issues

© 2004 AB Strakt 3

STRAKT

What we'll cover...:
 Design Patterns, including "myths and realities"
 the Holder and Wrapper Python idioms
 the Adapter DP
 the Facade DP
 the Currying DP and Python callback systems
 the Decorator DP
 the Protocol Adaptation proposal (PEP 246)
 ...and, iff time allows...:

• the Proxy DP

• the Bridge DP

© 2004 AB Strakt 4

STRAKT

Next up...:
 Design Patterns, myths and realities
 Holder and Wrapper
 Adapter
 Facade
 Currying
 Decorator
 Protocol Adaptation (PEP 246)
 Proxy
 Bridge

© 2004 AB Strakt 5

STRAKT

Design Patterns

 rich, thriving subculture of the OO
development culture

 Gamma, Helms, Johnson, Vlissides,
"Design Patterns", Addison-Wesley
 more introductory: Shalloway, Trott, "Design

Patterns Explained" (AW)

 PLoP conferences & books

© 2004 AB Strakt 6

STRAKT

...but also...
 Design Patterns risked becoming

a "fad" or "fashion" recently
• cause: the usual, futile search for

the "silver bullet"...!
•

 let's not throw the design patterns
out with the silver bullet!

Image has been scaled down. See full-size image.

www.avshop.com/productimages/ products/4514-300.jp
277 x 300 pixels - 8k
This image may be subject to copyright.

Below is the image in its original context on the page: www.avshop.com/ catalog/product.html?productid=451

Remove Frame

Back to Results

Catalog Quick Order
Enter the product code

from your AvShop
Catalog.

Buy Now

Hello! Sign in to access
subscriptions or to get
personalized
recommendations. New to
AvShop? Start here.

Email:

Password:

Login

beam allows you to see clearly in the

darkest places. The body of the light is

under 2" long and less than 1/2" in

diameter. The body is attached to a 1"

silver chain with a 3/4" diameter spring-

loaded keyring.

Perfect for map and chart reading as well

as illumination of door locks and

keyholes. Safely illuminates paths and

walks.

The easily replaceable, long lasting

button-cell batteries last 10 times longer

than conventional batteries, making Silver

Bullet™ the most reliable, powerful, and

economical light for all uses.

OPERATING INSTRUCTIONS

1. Push button and hold to turn light ON.

2. Release button to turn OFF.

© 2004 AB Strakt 7

STRAKT

DP myths and realities (1)

 DPs are not independent from
language choice, because: design
and implementation must interact
(no to "waterfall"...!)

 in machine-code: "if", "while",
"procedure" ... are patterns!

 HLLs embody these, so they are
not patterns in HLLs

© 2004 AB Strakt 8

STRAKT

DP myths and realities (2)

 many DPs for Java/C++ are
"workarounds for static typing"

 cfr Alpert, Brown, Woolf, "The DPs
Smalltalk Companion" (AW)

 Pythonic patterns = classic ones,
minus the WfST, plus (optionally)
exploits of Python's strengths

© 2004 AB Strakt 9

STRAKT

DP myths and realities (3)
 formal-language presentation

along a fixed schema is useful
 it is not indispensable

• mostly a checklist "don't miss this"
• and a help to experienced readers

 nor indeed always appropriate
• always ask: who's the audience?

© 2004 AB Strakt 10

STRAKT

DP write-up components:

 name, context, problem
 forces, solution, (examples)
 results, (rationale), related DPs
 known uses: DPs are discovered,

not invented!
 DPs are about description (and

suggestion), not prescription

© 2004 AB Strakt 11

STRAKT

DPs: a summary assessment
 Design Patterns are not "silver bullets"
 they are, however, quite helpful IRL
 naming, by itself, already helps a lot!

• like "that guy with the hair, you know, the Italian..."
• vs "Alex"

 even when the DPs themselves dont help,
study and reflection on them still does
• "no battle plan ever survives contact with the enemy"
• and yet drawing up such plans is still indispensable

© 2004 AB Strakt 12

STRAKT

Two groups of "Structural" DPs

 Masquerading: an object
"pretends to be" (possibly
fronts/proxies for...) another

 Adaptation: correct "impedance
mismatches" between what's
provided and what's required

© 2004 AB Strakt 13

STRAKT

Next up...:
 Design Patterns, myths and realities
 Holder and Wrapper
 Adapter
 Facade
 Currying
 Decorator
 Protocol Adaptation (PEP 246)
 Proxy
 Bridge

© 2004 AB Strakt 14

STRAKT

Pydioms: Holder vs Wrapper
 Holder: object O has subobject S as an

attribute (may be a property), that's all
• use as self.S.method or O.S.method

 Wrapper: holder (often via a private
attribute) plus delegation (use O.method)
• explicit: def method(self,*a,**k):
 return self._S.method(*a,**k)
• automatic (typically via __getattr__)...:
def __getattr__(self, name):
 return getattr(self._S, name)

© 2004 AB Strakt 15

STRAKT

Holder vs Wrapper + and -
 Holder: simpler, more direct and immediate

• low coupling O ↔ S
• high coupling between O's clients and S (and O's

internals...), lower flexibility

 Wrapper: slightly fancier, somewhat indirect
• high coupling (and hopefully cohesion...!) O ↔ S
• automatic delegation can help with that

 Wrapper helps respect "Demeter's Law"
• basically "only one dot" (or, "not too many dots"!-)

© 2004 AB Strakt 16

STRAKT

Next up...:
 Design Patterns, myths and realities
 Holder and Wrapper
 Adapter
 Facade
 Currying
 Decorator
 Protocol Adaptation (PEP 246)
 Proxy
 Bridge

© 2004 AB Strakt 17

STRAKT

DP "Adapter"
 client code γ requires a certain protocol C
 supplier code σ provides different protocol

S (with a superset of C's functionality)
 adapter code α "sneaks in the middle":

• to γ, α is supplier code (produces protocol C)
• to σ, α is client code (consumes protocol S)
• "inside", α implements C (by means of calls to S on σ)

NB, "interface" vs "protocol" == "syntax" vs
"syntax + semantics + pragmatics"

© 2004 AB Strakt 18

STRAKT

Python toy-example Adapter
 C requires: method foobar(foo, bar)
 S provides: method barfoo(bar, foo)
 a non-OO context is of course possible:
def foobar(foo,bar):
 return barfoo(bar,foo)
 in OO context, say we have available as σ:
class Barfooer:
 def barfoo(self, bar, foo): ...

© 2004 AB Strakt 19

STRAKT

Object Adapter
 per-instance, by wrapping & delegation:
class FoobaringWrapper:
 def __init__(self, wrappee):
 self.w = wrappee
 def foobar(self, foo, bar):
 return self.w.barfoo(bar, foo)

foobarer = FobaringWrapper(barfooer)

© 2004 AB Strakt 20

STRAKT

Class Adapter
 per-class, by subclassing & self-delegation:
class Foobarer(Barfooer):
 def foobar(self, foo, bar):
 return self.barfoo(bar, foo)

foobarer = Foobarer(some,init,params)

© 2004 AB Strakt 21

STRAKT

Adapter: some known uses
 shelve: adapts "limited dict" (str keys

and values, basic methods) to fuller dict:
• non-str values via pickle + UserDict.DictMixin

 socket._fileobject: socket to filelike
• has lot of code to implement buffering properly

 doctest.DocTestSuite: adapts doctest's
tests to unittest.TestSuite

 dbhash: adapts bsddb to dbm
 StringIO: adapts str or unicode to filelike

© 2004 AB Strakt 22

STRAKT

Adapter observations
 real-life Adapters may require lots of code
 mixin classes help in adapting to rich

protocols (by implementing advanced
methods on top of fundamental ones)

 Adapter occurs at all levels of complexity,
from tiny dbhash to many bigger cases

 in Python, Adapter is not just about classes
and their instances (by a long shot...)

© 2004 AB Strakt 23

STRAKT

Next up...:
 Design Patterns, myths and realities
 Holder and Wrapper
 Adapter
 Facade
 Currying
 Decorator
 Protocol Adaptation (PEP 246)
 Proxy
 Bridge

© 2004 AB Strakt 24

STRAKT

DP "Facade"
 existing supplier code σ provides rich,

complex functionality in protocol S
 we need a simpler "subset" C of S
 facade code Φ "sneaks in front of" σ,

implements and supplies C by calling S

© 2004 AB Strakt 25

STRAKT

Python toy-example Facade
class LifoStack:
 def __init__(self):
 self._stack = []
 def push(self, datum):
 self._stack.append(datum)
 def pop(self):
 return self._stack.pop()

© 2004 AB Strakt 26

STRAKT

Facade vs Adapter
 Adapter is mostly about supplying a "given"

protocol required by client-code
• sometimes, it's about homogeinizing existing suppliers

in order to gain polymorphism

 Facade is mostly about simplifying a rich
interface of which only a subset is needed

 of course they do "shade" into each other
 Facade often "fronts for" several objects,

Adapter typically for just one

© 2004 AB Strakt 27

STRAKT

Facade: some known uses
 asynchat.fifo facades for list
 dbhash facades for bsddb

• yes, I did also give this as an Adapter known-use...
 sets.Set mostly facades for dict

• also adds some set-operations functionality
 Queue facades for list + lock
 os.path: basename and dirname facade for
split + indexing; isdir &c facade for
os.stat + stat.S_ISDIR &c

© 2004 AB Strakt 28

STRAKT

Facade observations
 real-life Facades may contain substantial

code (simplifying the protocol is key...)
 interface-simplification is often mixed in

with some small functional enrichments
 Facade occurs at all levels of complexity,

from tiny os.path.dirname to richer cases
 inheritance is never really useful here

(inheritance only "widens", can't "restrict")

© 2004 AB Strakt 29

STRAKT

Next up...:
 Design Patterns, myths and realities
 Holder and Wrapper
 Adapter
 Facade
 Currying
 Decorator
 Protocol Adaptation (PEP 246)
 Proxy
 Bridge

© 2004 AB Strakt 30

STRAKT

Adapting/facading callables
 callables (functions, methods, ...) play a

very large role in Python programming
• they're first-class objects
• Python doesn't force you to only use classes...!

 a frequently needed adaptation (may be
seen as facade): pre-fix some arguments

 most often emerges in callback systems
 widely known as the "Currying" DP

• not a pedantically perfect name: DP names rarely are

© 2004 AB Strakt 31

STRAKT

"Currying" in Python
 the typical use case: for some object btn,
btn.setOnClick(acallable)...
• will call acallable()"when the button gets clicked"

• but we have a function def foo(anumber): ...

• how do we ensure a button click calls foo(23)?

• btn.setOnClick(lambda: foo(23))
• very similar issues if the callback is acallable(evt)

and we want it to call foo(evt, 23)
 lambda can do any sig-adaptation, but...

FAQ(Only Japanese)

Bob & Angie >> Recipe

Recipe

Curry ru

Basic Recipes

Curry rice

Ingriedents: (4 servings)

6 cups rice, 300g meat (block of beef thigh), 1 carrot, 2 potatos, 2 onions,
*curry ru (premade pakcage)*120g, salt, pepper, 20g butter, salad oil.

Rakkyo

Fukujinzuke

Preparation:

1. Make rice (harder than usual) -> see How to make rice.
2. cut meat into bite size pieces, shake salt and pepper over it.
3. Cut onion vertically cut halves into rough slices.
4. Peel potatos,cut in half and into triangular pieces of 2-4.
5. Cut carrot in the same way as potatos.

How to make:

1. In a skillet put oil and butter, turn on fire.
2. Add meat, fry till surface is browned.
3. Add onion, fry till translucent.
4. Add carrots and potatos, fry throughly then add water.
5. When it come to a boil remove foam from surface, boil till vegetables

are soft.
6. Turn off heat, break paste (block) into small pieces and put in.
7. Simmer on a low fire till curry paste is melted entirely.
8. Put rice on dishes put curry on rice.

Serve with:

Garnish with rakkyo, pickles, fukujinzuke.

© 2004 AB Strakt 32

STRAKT

Currying with a class
class Curry(object):
 def __init__(self, f, *a, **k):
 self.f, self.a, self.k = f, a, k
 def __call__(self, *b, **kk):
 d = self.k.copy()
 d.update(kk)
 return self.f(*(b+self.a), **d)

btn.setOnClick(Curry(foo, 23))

© 2004 AB Strakt 33

STRAKT

Currying with a closure
def curry(f, *a, **k):
 def curried(*b, **kk):
 d = k.copy()
 d.update(kk)
 return f(*(b+a), **d)
 return curried
btn.setOnClick(curry(foo, 23))
 **k w/lambda possible though a bit tricky:
lambda *b,**kk: f(*(b+a), **dict(k,**kk))

© 2004 AB Strakt 34

STRAKT

Currying-on-callback-setting
 best way to design callback-settings in

Python: stash away extra args w/callable
def setOnClick(self, f, *a, **k): ...
 then just use as: btn.setOnClick(foo, 23)
 known uses:

• atexit.register, urllib.addclosehook,
Tkinter.after

• threading.Timer, sched.scheduler.enter,
optparse.Option (w/o */** in signatures)

© 2004 AB Strakt 35

STRAKT

Next up...:
 Design Patterns, myths and realities
 Holder and Wrapper
 Adapter
 Facade
 Currying
 Decorator
 Protocol Adaptation (PEP 246)
 Proxy
 Bridge

© 2004 AB Strakt 36

STRAKT

DP "Decorator"
 client code γ requires a certain protocol C
 supplier code σ provides exactly protocol C
 however, we also want to insert some

small addition or semantic modification
• quite possibly "pluggable" in/out during runtime

 decorator code δ "sneaks in the middle":
• δ wraps σ, both consumes and produces C
• may intercept, modify, (add a little), delegate, ...
• γ uses δ, just as it would use σ

© 2004 AB Strakt 37

STRAKT

Python toy-example Decorator
class uppercasingfile:
 def __init__(self, *a, **k):
 self.f = file(*a, **k)
 def write(self, data):
 self.f.write(data.upper())
 def __getattr__(self, name):
 return getattr(self.f, name)

© 2004 AB Strakt 38

STRAKT

Decorator: some known uses
 gzip.GzipFile decorates file with

compression / decompression (using zlib)
 threading.RLock decorates thread.Lock

with re-entrancy (and "ownership" concept)
• Semaphore, even Condition, also kinda decorators

 codecs stream classes decorate file with
generic encoding and decoding

© 2004 AB Strakt 39

STRAKT

Decorator observations
 "pure" decorator (without some small

additions to the protocol) is rare in Python
 file/stream objects are favourite targets for

Python decorator uses
 Decorator typically occurs in reasonably

simple cases
 dynamic on/off snap-ability not often used

in Python (we have other dynamisms...)

© 2004 AB Strakt 40

STRAKT

Next up...:
 Design Patterns, myths and realities
 Holder and Wrapper
 Adapter
 Facade
 Currying
 Decorator
 Protocol Adaptation (PEP 246)
 Proxy
 Bridge

© 2004 AB Strakt 41

STRAKT

Protocol Adaptation (PEP 246)
 given protocol (type, interface, ...) P and

object O, who knows how to adapt O to P...?
• maybe O already "belongs to" / "implements" P, e.g.
isinstance(O, P) when type(P) is type

• maybe, given O's type/value, P can adapt O to itself,
e.g. P(O) could return a suitable value or wrapper

• maybe P and O know nothing about each other, but a
3rd-party factory makePfromO(O) could return a
suitable "adapter to P" wrapper or value

 why should my application code care?!

© 2004 AB Strakt 42

STRAKT

What is P in PEP 246's context?
 could be anything, really

• a type
• a zope.interface
• a PyProtocols' Protocol
• ...something else again...
• it doesn't really matter all that much!

 should mean a Protocol, not just an
Interface (syntax+semantics+pragmatics,
not just syntax such as method names and
signatures)

© 2004 AB Strakt 43

STRAKT

PEP 246: the adapt function (1)
def adapt(obj, prot, default=None):
 """NB: approximate semantics only!"""
 if type(obj) is prot: return obj
 try: return _adapt_obj_prot(obj, prot)
 except TypeError: pass
 try: return _adapt_prot_obj(prot, obj)
 except TypeError: pass
 if isinstance(obj, prot): return obj
 return _adapt_byreg(obj, prot, default)

© 2004 AB Strakt 44

STRAKT

PEP 246: the adapt function (2)
def _adapt_obj_prot(obj, prot):
 c = getattr(obj, '__conform__', None)
 return c(prot)
def _adapt_prot_obj(prot, obj):
 a = getattr(prot, '__adapt__', None)
 return a(obj)
def _adapt_byreg(obj, prot, default):
 a = _adapt_regis.get((type(obj), prot))
 try: return a(obj, prot)
 except TypeError: return default

© 2004 AB Strakt 45

STRAKT

The Adaptation Registry
_adapt_regis = {}
def reg_adapt(atype, prot, factory):
 _adapt_regis[(atype,prot)] = factory
just for example... :
def by_coercion(obj, prot):
 return prot(obj)
reg_adapt(str, int, by_coercion)
now adapt('23',int) is 23,
but adapt('foo',int) raises

© 2004 AB Strakt 46

STRAKT

Protocol Adaptation usage
 Mr Xer writes function X, requiring an

argument a which meets protocol P
• but carefully uses a=adapt(a,P) on entry

 Ms Yer writes function Y returning an
instance q of type Q

 Mr Zer writes an adapter factory Z, Q → P
 application writer Aer, once Z is registered,

just calls X(Y()) w/o a care in the world

© 2004 AB Strakt 47

STRAKT

A quote from PEP 246
"""

The typical Python programmer is an integrator, someone
who is connecting components from various suppliers.
Often the interfaces between these components require an
intermediate adapter. Usually the burden falls upon the
application programmer to study the interfaces exposed by
one component and required by another, determine if they
are directly compatible, or develop an adapter.

"""
Protocol Adaptation removes this burden!

© 2004 AB Strakt 48

STRAKT

Protocol Adaptation vs typecheck
def fooit(x):
 if isinstance(x,int): return fooI(x)
 elif isinstance(x,...
replace fooit's body with something like:

 adapt(x,fooer)(x)
with an initialization that goes roughly like:

class fooer: pass
def int_foo(x): return fooI(x)
reg_adapt(int,fooer,lambda *a:int_foo)

© 2004 AB Strakt 49

STRAKT

A PEP 246 trial implementation
 Phillip Eby's PyProtocols

• http://peak.telecommunity.com/PyProtocols.html

 several nifty little extras wrt PEP 246
 spells reg_adapt as declareAdapter
 also supports IBar(foo) like adapt(foo,IBar)

• only for instances of protocols.interface & c

 uses "metaprotocols" extensively
 warning: transitive adaptation

• strong risk of "too much black magic"...

© 2004 AB Strakt 50

STRAKT

Next up...:
 Design Patterns, myths and realities
 Holder and Wrapper
 Adapter
 Facade
 Currying
 Decorator
 Protocol Adaptation (PEP 246)
 Proxy
 Bridge

© 2004 AB Strakt 51

STRAKT

DP "Proxy"
 client code Υ would be just about fine with

accessing some "true" object τ
 however, some kind of issue interferes:

• we need to restrict access (e.g. for security)
• object τ "lives" remotely or in some persisted form
• we have lifetime/performance issues to solve

 proxy object π "sneaks in the middle":
• π wraps τ, may create/delete it at need
• may intercept, check calls, delegate, ...
• γ uses π, just as it would use τ

 MONDAY, JUNE 7, 104

BRUCE CAMPBELL ONLINE > FILMOGRAPHY > 1994

 Search

 GOOGLE BRUCE CAMPBELL ONLINE

SITE MENU

LINKS

 Bubba Ho Tep

 IMDB

Official BC
Sounds

 Deadites Online

 Brisco Guidebook

 Becker Films

Ladies of the Evil
__Dead

 Anchor Bay

Detroit Film
__Center

FILMOGRAPHY: 1994
1982 · 1983 · 1985 · 1987 · 1988 · 1989 · 1990 · 1991 · 1992 · 1993 · 1994 · 1995 · 1996 · 1997 · 1998 · 1999 · 2000 · 2001 · 2002 ·

2003 · 2004

BRISCO COUNTY JR. · HUDSUCKER PROXY

THE HUDSUCKER PROXY

 Role: "Smitty"
Writers: Ethan Coen, Joel Coen, & Sam Raimi
Directors: Joel Coen & Ethan Coen

"A zany Coen Bros/Sam Raimi fairy tale about a bumbling idiot who rises to the
top of the corporate world. I played Smitty, a fast-talking, Lucky Strike-
smoking newsroom schmoe." -BC

Availability:
DVD The Hudsucker Proxy
VHS The Hudsucker Proxy

Screenshot Courtesy Of Peggy
Kuntzleman

Page updated on March 1, 2004

Copyright © Campbell Entertainment
Website designed and maintained by Kiffington Industries

© 2004 AB Strakt 52

STRAKT

Python toy-example Proxy
class JustInTimeCreator:
 def __init__(self, cls, *a, **k):
 self._m = cls, a, k
 def __getattr__(self, name):
 if not hasattr(self, '_x'):
 cls, a, k = self._m
 self._x = cls(*a, **k)
 return getattr(self._x, name)

© 2004 AB Strakt 53

STRAKT

Proxy: some known uses
 Bastion used to proxy for any other object

in a restricted-execution context
 shelve.Shelf's values proxy for persisted

objects (getting instantiated at-need)
 xmlrpclib.ServerProxy proxies for a

remote server (not for a Python object...)
 weakref.proxy proxies for any existing

object but doesn't "keep it alive"

© 2004 AB Strakt 54

STRAKT

Proxy observations
 a wide variety of motivations for use:

• controlling access
• remote or persisted objects
• instantiating only at-need
• other lifetime issues

 correspondingly wide range of variations
 Python's automatic delegation and "type

agnosticism" make Proxy a real snap
 wrapping and proxying are quite close

© 2004 AB Strakt 55

STRAKT

Next up...:
 Design Patterns, myths and realities
 Holder and Wrapper
 Adapter
 Facade
 Currying
 Decorator
 Protocol Adaptation (PEP 246)
 Proxy
 Bridge

© 2004 AB Strakt 56

STRAKT

Bridge
♠ AKQJT987 ♠ AKQJT987
♥ 62 ♥ 62
♦ 54 ♦ 543
♣ 73 ♣ 7
 "The Bridge World" January and
February 2000 issues, "How Shape
Influences Strength" by A. Martelli

vs

© 2004 AB Strakt 57

STRAKT

...oops!...
 ah, not that Bridge...?!

...that's [just a bit] more like it...

© 2004 AB Strakt 58

STRAKT

DP "Bridge"
 several (N1) realizations ρ of abstraction A,
 may each use any one of several (N2)

implementations ι of functionality F
 we don't want to code N1 * N2 cases
 so we make abstract superclass A of all ρ

hold a reference R to (an instance of)
abstract superclass F of all ι, and...

 ...make each ρ use any functionality from F
(thus, from a ι) only through R

© 2004 AB Strakt 59

STRAKT

Why "bridge"?

F

ι1 ι2 ιn

A

ρ1 ρ2 ρn

© 2004 AB Strakt 60

STRAKT

Python toy-example Bridge
class AbstractParser:
 def __init__(self, scanner):
 self.scanner = scanner

class ExprParser(AbstractParser):
 def expr(self):
 ...t = self.scanner.next()...
 ...self.scanner.push_back(t)...

© 2004 AB Strakt 61

STRAKT

Pythonic peculiarities of Bridge
 often no real need for an abstract base

class for the "implementation"
• just rely on signature-based polymorphism
• Python inheritance is mostly about handy code reuse

 each ρ can access self.R.amethod
directly, or you can proxy with A.amethod:
def amethod(self,*a):
 return self.R.amethod(*a)
• respects "Demeter's Law", see "Holder vs Wrapper"

© 2004 AB Strakt 62

STRAKT

Bridge: some known uses
 htmllib: HTMLParser → Formatter

• but: not really meant for subclassing
 formatter: formatter → writer

• NullFormatter / AbstractFormatter "unrelated"

• NullWriter baseclass not technically "abstract"
(provides empty implementations of methods)

 xml.sax: reader(parser) → handlers
• multiple Bridge's -- one per handler

 email: Parser -> Message
• holds class, not instance

© 2004 AB Strakt 63

STRAKT

Advanced known-use of Bridge
 SocketServer std library module:
 BaseServer is the abstraction
 BaseRequestHandler is the implementation

abstract-superclass
 ...with some typical pythonic peculiarities:

• also uses mix-ins (for threading, forking, ...)
• A holds the very class F, instantiates it per-request, not

just an instance of F

© 2004 AB Strakt 64

STRAKT

Bridge observations
 Bridge occurs mostly for substantially

complex and rich cases
 inheritance used only occasionally in

Python Bridge cases
• when used, may be from a not-truly-abstract class

 often reference R is to class, not instance
• affords easy repeated instantiation
• no KU found, but: state might be kept in a Memento

