
© 2003 AB Strakt STRAKT

Threads in Python 2.3

Alex Martelli

with ideas from: Just van
Rossum, Guido van Rossum, ...

© 2003 AB Strakt STRAKT

Threads in general

don't use them!
90% of the time you think you need
multiple threads, you're better off
with alternatives:

async (event-driven) programming
multiple processes

but, if you must... (10%)...

© 2003 AB Strakt STRAKT

Threads in Python

Queue-based architecture
90% of the 10% (9% net) you're
best off with Queues

RLock, Condition, Lock,
Semaphore, Event

cover 90% of the rest (0.9% net)

...what about the other 0.1%?

© 2003 AB Strakt STRAKT

thread.interrupt_main()
it's in 2.3 since Beta 2
it comes from ex-IDLEfork (now IDLE)
it's limited:
• can't interrupt blocking system calls
• could cause deadlocks (less likely now!)

...but it can still be useful (for 90% of
the 0.1%...!-)

© 2003 AB Strakt STRAKT

deadlocks are less likely...
lock.acquire()

#interrupts now masked here...!

try:

...

finally:

lock.release()

© 2003 AB Strakt STRAKT

How is interrupt_main useful
fundamental known use case:
• make new "monitor" thread
• run user script in main
• and now, monitor can interrupt a "runaway"

(buggy) user script

(...in most cases...)

© 2003 AB Strakt STRAKT

However...
main thread may be otherwise taken
e.g., may have to control event-loop
so -- could we interrupt other threads?
...pretty please...?-)
• it covers a whopping 0.009%... :-)
• we don't want newbies messing with it
• so: accessible as a C-API only ("ordeal")

© 2003 AB Strakt STRAKT

Interrupting other threads
if(!PyArg_ParseTuple(args, "iO",

&threadid, &exceptionClass))

return 0;

count = PyThreadState_SetAsyncExc(

threadid, exceptionClass);

if(count > 1) /*we're in trouble!*/

PyThreadState_SetAsyncExc(

threadid, NULL);

return Py_BuildValue("i", count);

© 2003 AB Strakt STRAKT

PS: why not multi-process?
when Python is the embedded scripting
language, forking may be impractical
in some Windows versions making a
new process takes "forever" and inter-
process control can be hairy and buggy
(while threads do work fine there)

	Threads in Python 2.3
	Threads in general
	Threads in Python
	thread.interrupt_main()
	deadlocks are less likely...
	How is interrupt_main useful
	However...
	Interrupting other threads
	PS: why not multi-process?

