
©2005 Alex Martelli aleax@google.com

Python’s Object Model

Objects by Design

http://www.aleax.it/Python/nylug05_om.pdf

What’s OOP?
I dunno -- what’s OOP with you?

2

INTRODUCTION

Alley Oop made his official "big time" debut in the nation's funny pages on August 7, 1933.
Not surprisingly, Alley found himself in a jam in the very first panel—lost in the jungles of
Moo and surrounded by hungry dinosaurs. Within a week of his initial appearance he had
stumbled upon Dinny, the dinosaur who quickly became his pet and principal means of
transportation while in Moo. Soon after, he made his way out of the jungle and met up with
King Guz and his rhyming friend, Foozy. Along the way he met his new girlfriend, Ooola,
and the King's advisor, the Grand Wizer.

Later in his career, Alley Oop was plucked from the Land of Moo by Dr. Wonmug's time
machine. Dr. Wonmug brought Alley and Ooola to the 20th century, where a new series of

Alley Oop...?

Three faces of OOP
OOP: package state and behavior into
suitable “chunks”, in order to achieve...:

Delegation
let something else do (most of) the work

Polymorphism
act “as if” you were something else

Instantiation
one “blueprint”, many instances

3

OOP for delegation
intrinsic/implicit (via attribute lookup):

instance -> class
class -> descriptors
class -> base classes

overt/explicit:
containment and delegation (hold/wrap)
delegation to self

inheritance: more rigid; IS-A...
hold/wrap: more flexible; USES-A...

4

Attribute lookup
x.y [and identically x.y()!] means:

check out descriptor stuff
or else try x.__dict__['y']
or else try type(x).__dict__['y']
or else try:
for base in type(x).__mro__: ...

x.y = z means:
check out descriptor stuff
or else x.__dict__['y'] = z

5

Descriptors
the key infrastructure of Python's OOP
attribute access (get, set, delete) ->

search class/superclasses dicts for name
if suitable descriptor found, delegate

all descriptors have method __get__
if also has __set__, data descriptor (aka
override descriptor)

meaning: class overrides instance
otherwise, non-data/non-override desc.

6

Descriptor mechanics (r)
x = C(); return x.foo

 ==>

if hasattr(C, 'foo'):
d = C.foo; D = d.__class__
if hasattr(D, '__get__') \
 and (hasattr(D, '__set__')
 or 'foo' not in x.__dict__):
return D.__get__(d, x, C)

return x.__dict__['foo'] # or from C, &c

7

Descriptor mechanics (w)
x = C(); x.foo = 23

 ==>

if hasattr(C, 'foo'):
d = C.foo; D = d.__class__
if hasattr(D, '__set__'):
D.__set__(d, x, 23)
return

x.__dict__['foo'] = 23

8

Functions are descriptors
def adder(x, y): return x + y
add23 = adder.__get__(23)
add42 = adder.__get__(42)

print add23(100), add42(1000)
123 1042

9

property built-in type
property(fget=None, fset=None,

fdel=None, doc=None)

fget(obj) -> value
fset(obj, value)
fdel(obj)
class Foo(object):
def getBar(self): return 23
def setBar(self, val): pass
def delBar(self): pass
bar = property(getBar, setBar, delBar,
"barbarian rhubarb baritone")

10

property & inheritance
...a tricky issue w/property & inheritance:

class Base(object):
def getFoo(self): return 23
foo = property(getFoo, doc="the foo")

class Derived(Base):
def getFoo(self): return 42

d = Derived()
print d.foo
23 # ...???

11

The extra-indirection fix
class Base(object):
def getFoo(self): return 23
def _fooget(self): return self.getFoo()
foo = property(_fooget)

class Derived(Base):
def getFoo(self): return 42

d = Derived()
print d.foo

Can be seen as a "Template Method DP"...

12

Custom descriptors
class DefaultAlias(object):
" overridable aliased attribute "
def __init__(self, nm): self.nm = nm
def __get__(self, obj, cls):
if obj is None: return self
else: return getattr(obj, self.nm)

class Alias(DefaultAlias):
" unconditional aliased attribute "
def __set__(self, obj, value):
setattr(obj, self.nm, value)

def __delete__(self, obj):
delattr(obj, self.nm)

13

Just-in-Time computation
class Jit(object):
def __init__(self, meth, name=None):
if name is None: name = meth.__name__
self.meth = meth
self.name = name

def __get__(self, obj, cls):
if obj is None: return self
result = self.meth(obj)
setattr(obj, self.name, result)
return result

NB: same inheritance issues as property!
14

Pydioms: hold vs wrap
“Hold”: object O has subobject S as an
attribute (maybe property) -- that’s all

use self.S.method or O.S.method
simple, direct, immediate, but coupling on
the wrong axis

“Wrap”: hold (often via private name) plus
delegation (so you use O.method)

explicit (def method(self...)...self.S.method)
automatic (delegation in __getattr__)
gets coupling right (Law of Demeter)

15

class RestrictingWrapper(object):
def __init__(self, w, block):
self._w = w
self._block = block

def __getattr__(self, n):
if n in self._block:
raise AttributeError, n

return getattr(self._w, n)
...

Inheritance cannot restrict!
But...: special methods require special care

Wrapping to restrict

16

Self-delegation == TMDP
Template Method design pattern
great pattern, lousy name

the word “template” is way overloaded...!
classic version:

abstract base’s organizing method...
...calls hook methods of subclasses
client code calls OM on instances

mixin version:
mixin base’s OM, concrete classes’ hooks

17

class Queue:
...
def put(self, item):
self.not_full.acquire()
try:
while self._full():
self.not_full.wait()

self._put(item)
self.not_empty.notify()

finally:
self.not_full.release()

def _put(self, item):
self.queue.append(item)

...

TMDP in Queue.Queue

18

Queue’s TMDP
Not abstract, most often used as-is

so, must implement all hook-methods
subclass can customize queueing discipline

with no worry about locking, timing, ...
default discipline is simple, useful FIFO
can override hook methods (_init, _qsize,
_empty, _full, _put, _get) AND also...
...data (maxsize, queue), a Python special

19

class LifoQueue_with_deque(Queue):
def _put(self, item):
self.queue.appendleft(item)

class LifoQueue_with_list(Queue):
def _init(self, maxsize):
self.maxsize = maxsize
self.queue = list()

def _get(self):
return self.queue.pop()

Customizing Queue

20

DictMixin’s TMDP
Abstract, meant to multiply-inherit from

does not implement hook-methods
subclass must supply needed hook-methods

at least __getitem__, keys
if R/W, also __setitem__, __delitem__
normally __init__, copy
may override more (for performance)

21

class DictMixin:
...
def has_key(self, key):
 try:
 # implies hook-call (__getitem__)
 value = self[key]
 except KeyError:
 return False
 return True
def __contains__(self, key):
 return self.has_key(key)
NOT just: __contains__ = has_key

TMDP in DictMixin

22

Chaining Mappings
given multiple mappings (e.g. dictionaries) in
a given order,
we want to build a “virtual” read-only
mapping by chaining the given dicts
i.e., try each lookup on each given dict, in
order, until one succeeds or all fail

23

class Chainmap(UserDict.DictMixin):
def __init__(self, mappings):
self._maps = mappings

def __getitem__(self, key):
for m in self._maps:
try: return m[key]
except KeyError: pass

raise KeyError, key
def keys(self):
keys = set()
for m in self._maps: keys.update(m)
return list(keys)

Exploiting DictMixin

24

State and Strategy DPs
Somewhat like a “Factored-out” TMDP

OM in one class, hooks in others
OM calls self.somedelegate.dosomehook()

classic vision:
Strategy: 1 abstract class per decision,
factors out object behavior
State: fully encapsulated, strongly
coupled to Context, self-modifying

Python: can also switch __class__, methods

25

Strategy DP
class Calculator(object):

def __init__(self):
self.setVerbosity()

def setVerbosity(self, quiet=False):
if quiet: self.strat = Quiet()
else: self.strat = Show()

def compute(self, expr):
res = eval(expr)
self.strat.show('%r=%r'% (expr, res))

26

Strategy classes
class Show(object):
def show(self, s):
 print s

class Quiet(Show):
def show(self, s):
 pass

27

State DP: base class
class Calculator(object):

def __init__(self):
 self.state = Show()

def compute(self, expr):
res = eval(expr)
self.state.show('%r=%r'% (expr, res))

def setVerbosity(self, quiet=False):
self.state.setVerbosity(self, quiet)

28

State classes
class Show(object):
def show(self, s):
 print s
def setVerbosity(self, obj, quiet):
if quiet: obj.state = Quiet()
else: obj.state = Show()

class Quiet(Show):
def show(self, s):
 pass

29

Ring Buffer
FIFO queue with finite memory: stores
the last MAX (or fewer) items entered
good, e.g., for logging purposes

intrinsically has two macro-states:
early (<=MAX items entered yet), just
append new ones
later (>MAX items), each new item
added must overwrite the oldest one
remaining (to keep latest MAX items)

switch from former macro-state
(behavior) to latter is massive,
irreversible

30

Switching __class__ (1)
class RingBuffer(object):
def __init__(self, MAX=256):
 self.d = list()
 self.MAX = MAX
def tolist(self):
 return list(self.d)
def append(self, item):
self.d.append(item)
if len(self.d) == self.MAX:
self.c = 0
self.__class__ = _FullBuffer

31

Switching __class__ (2)
class _FullBuffer(object):
def append(self, item):
self.d[self.c] = item
self.c = (1+self.c) % self.MAX

def tolist(self):
return (self.d[self.c:] +
 self.d[:self.c])

32

Switching a method
class RingBuffer(object):
def __init__(self, MAX=256):
 self.d = list()
 self.MAX = MAX
def append(self, item):
self.d.append(item)
if len(self.d) == self.MAX:
self.c = 0
self.append = self._append_full

def _append_full(self, item):
self.d.append(item)
self.d.pop(0)

def tolist(self): return list(self.d)

33

OOP for polymorphism
intrinsic/implicit/classic:

inheritance (single/multiple)
overt/explicit/pythonic:

adaptation and masquerading DPs
special-method overloading
advanced control of attribute access
custom descriptors (and metaclasses)

34

Python's polymorphism
...is notoriously based on duck typing...:

35
(why a duck?)

 1 2 3 4 5 6 7 8

"Dear Farmer Brown,
The pond is quite boring.
We'd like a diving board.

Sincerely,
The Ducks."

Click, clack, quack. Click, clack, quack.
Clickety, clack, quack.

The End. Now, let's play!

 1 2 3 4 5 6 7 8

This Web site is for parents or teachers and their kids
to surf together.

It all begins here. Read this story with your kids, then
play related games. You don't have to have seen this
particular episode of Between the Lions. You can also
print this story to read away from the computer.

class Rats(object):
def __setattr__(self, n, v):
if not hasattr(self, n):
raise AttributeError, n

super(Rats, self).__setattr__(n, v)

affords uses such as:
class Foo(Rats):
bar, baz = 1, 2

so no new attributes can later be added.
None of __slots__'s issues (inheritance &c)!

Restricting attributes

36

(IF needed at all ...):
__slots__ strictly, only to save memory
(classes with LOTS of tiny instances)

Rats (& the like) for everything else

So, __slots__ or Rats?

37

Remember *AGNI*

Ain’t Gonna Need It!
38

class _const(object):
class ConstError(TypeError): pass
def __setattr__(self, n, v):
if n in self.__dict__:
raise self.ConstError, n

super(_const, self).__setattr__(n, v)
import sys
sys.modules[__name__] = _const()

here, no existing attributes can be changed

class instance as module

39

class Functor(object):
def __init__(self, init args):

...set instance data from init args...
def __call__(self, more args):

...use instance data and more args...
def outer(init args):

...set local vars (if needed) from init args...
def inner(more args):

...use outer vars and more args...
return inner

"closure factory" is simpler!

Functor or closure?

40

class SubclassableFunctor(object):
def __init__(self, init args):

...set instance data from init args...
def do_hook1(self, ...): ...
def do_hook2(self, ...): ...
def __call__(self, more args):

...use instance data and more args
 and call hook methods as needed...

class is more powerful and flexible, since
subclasses may easily customize it
use only as much power as you need!

Closure or functor?

41

def restrictingWrapper(w, block):
class c(RestrictingWrapper): pass
for n, v in get_ok_specials(w, block):
def mm(n, v):
def m(self, *a, **k):
return v(self._w, *a, **k)

return m
setattr(c, n, mm(n, v))

return c(w, block)

specials come from class

42

import inspect as i
def get_ok_specials(w, block):
 """ skip nonspecial names, ones in
 `block` or in RestrictingWrapper,
 and '__getattribute__' """
for n, v in i.getmembers(
 w.__class__, i.ismethoddescriptor):
if (n[:2] != '__' or n[-2:] != '__'
 or n in block or
 n == '__getattribute__' or
 n in RestrictingWrapper.__dict__):
continue

yield n, v

get_ok_specials

43

OOP for instantiation
one class -> many instances

same behavior, but distinct state
per-class behavior, per-instance state

...but at (rare) times we don't want that...
while still requiring other OOP feechurz
thus: Singleton (forbid "many instances")
or: Monostate (remove "distinct state")

44

class Singleton(object):
def __new__(cls, *a, **k):
if not hasattr(cls, '_inst'):
cls._inst = super(Singleton, cls
).__new__(cls, *a, **k)

return cls._inst

subclassing is a nasty problem, though:
class Foo(Singleton): pass
class Bar(Foo): pass
f = Foo(); b = Bar(); # ...???...
this problem is intrinsic to any Singleton!

Singleton ("Highlander")

45

class Borg(object):
_shared_state = {}
def __new__(cls, *a, **k):
obj = super(Borg, cls
).__new__(cls, *a, **k)

obj.__dict__ = cls._shared_state
return obj

subclassing no problem, data override helps:
class Foo(Borg): pass
class Bar(Foo): pass
class Baz(Foo): _shared_state = {}

Monostate ("Borg")

46

