!'_ [terators and Generators

Alex Martelli
AB Strakt

© 2002 AB Strakt 7/8/2002 1



<

i This Tutorial’s Audience

= You have a good base knowledge of
Python 2.* (say, 2.0 or 2.1)

= You may have no knowledge of
iterators, generators, other 2.2 features

= You want to understand exactly how
iterators and generators work in 2.2

= You want to learn how best to use them

© 2002 AB Strakt 7/8/2002 2



<

i This Tutorial’s Style

= Meant to be /nteractive

= I need feedback on your background
knowledge / how well you're following

= You need to ask questions, participate
(else, you'd just read a paper!)

= S0 please do "interrupt” with questions
& comments: it's what we're here for!

© 2002 AB Strakt 7/8/2002 3



<

i [teration before 2.2

for item in container:
any_for_body(1tem)

used to mean (the equivalent of):

_hidden_index = 0

while 1:
try: 1tem = contailner[_hidden_index]
except IndexError: break
_hidden_index = _hidden_index + 1
any_Tor_body(item)

© 2002 AB Strakt 7/8/2002 4



<

i [teration before 2.2: yes but...

= OK for seguences (which wantto be
randomly indexable, raise IndexError
when index is out of bounds)

= kludge-ish for streams (which do not
want to simulate random indexability)

= impossible for mappings (indexing
means something quite different!)

© 2002 AB Strakt 7/8/2002 5



<

i Streams before 2.2

A typical idiom to allow iteration was...:
class SomeStream:
def __init__(self):
self.current = 0
def __getitem__(self, index):
if index != self.current:
raise TypeError, ‘“sequential only!”
self.current = self.current + 1
if self.isFinished():
raise IndexError
return self.generateNextItem()

© 2002 AB Strakt 7/8/2002 6



<

i Streams before 2.2: problems

= Python and the iterable class are both
keeping iteration-indices...

= ...which they only use for error checks!
= No natural way to allow nested loops:

for x 1n container:
for y 1n container:
do_something(x, Yy)

© 2002 AB Strakt 7/8/2002 7



<

i Loops before 2.2

Given iterations’ issues, one often coded:
while 1:
1tem = next_iteration_value()
1f 1teration_finished(item): break
some_loop_body(1tem)

or even more clumsily (artificial state

flags, code duplication...) just to avoid
thewhile 1: / break construct

© 2002 AB Strakt 7/8/2002 8



<

i [teration since 2.2

for item in container:
any_for_body(item)

now means (the equivalent of):

_hidden_iterator = iter(container)

while True:
try: 1tem = _hidden_iterator.next()

except StopIteration: break
any_for_body(item)

New built-ins: iter, class stopiteration

© 2002 AB Strakt 7/8/2002 9



<

i 2.2 Iterators

= NO special iterator/iterable classes/types

= any x "is an iterator” if:
e can call x.next() (stopIteration allowed)
o ideally, iter(x) is x (see later)
= any vy "is iterable” if it allows iter(y):
e must return “an iterator” (as above)
o special method y.__iter__(Q) (see later)
* sequences are acceptable anyway

© 2002 AB Strakt 7/8/2002 10



<

i Other Languages’ Iterators

= Ruby, Smalltalk: “other way ‘round”
(you pass loop body code /nto the
iterator; in Python, the iterator yields
items out to the loop body code)

= Sather: much richer/more special --
Python’s iterators are normal objects
(Sather’s do let you do a lot more, but
at a substantial price in complexity)

© 2002 AB Strakt 7/8/2002 11



<

i The new built-in 1ter

- iter(x) first tries calling special method
x.__iter__Q, if x's type supplies it

= otherwise, if x is a sequence, iter(x)
creates and returns a wrapper-iterator
object that exactly simulates pre-2.2
behavior (see later)

= there’s also a two-arguments form,
1ter(callable, sentinel) (see later)

© 2002 AB Strakt 7/8/2002 12



<

iStreams in 2.2

A typical idiom to allow iteration is now...:

class SomeStream:

class _ItsIterator:
def __init__(self, stream):
self.stream = stream
def __iter__(self):
return self

def next(self):
it self.stream.isFinished():

raise StopIteration
return self.stream.generateNextItem()

def __1iter__(self):
return self._TItsIterator(self)

© 2002 AB Strakt 7/8/2002 13



<

i [terables and Iterators

= [terables generally hold “general state”
(e.g., a sequence hold items) but no
per-iteration state (nor ref to iterators)

= [terators generally hold only per-
iteration state + reference to iterable

= all iterators are iterable, but...

= conceptual separation allows nested
loops on iterable (not on an iterator!)

© 2002 AB Strakt 7/8/2002 14



1ter(sequence) IS RATHER
LIKE...:

class SequenceIterator:

def __1ni1t__(self, sequence):
self.seq = sequence
self.index = -1

def __1ter__(self):
return self

def next(self):
self.index += 1
try: return self.seq[self.1index]
except IndexError:

raise StopIteration

© 2002 AB Strakt 7/8/2002 15



<

i 1ter(sequence) notes

= no implicit copy/snapshot of sequence!

= can't alter sequence while looping on it

= Python does no implicit copies: if you

need a copy, ask for it!

for 1tem in mylist:
mylist.append(item*item) WRONG!

for 1tem 1in mylist[:]:
mylist.append(item*item) OKI

© 2002 AB Strakt 7/8/2002 16



<

i iter(callable,sentinel) is like...:

class SentinelIterator:
def __1nit__(self, callable, sentin):
self.callable callable
self.sentinel sentin
def __1ter__(self):
return self
def next(self):
result = self.callable()
it result == self.sentinel:
raise StopIteration
return result

© 2002 AB Strakt 7/8/2002 17



<

i Loops in 2.2 [1]

while True:
1tem = next_value()
1T 1tem==sentinel: break
some_loop_body(1tem)

becomes the much-smoother:
for 1tem 1n iter(next_value, sentinel):
some_loop_body(1tem)

What about general termination tests...:

1t 1teration_finished(item): break
e ?

© 2002 AB Strakt 7/8/2002 18



Loops in 2.2 [2]

class TestingIterator:
def __1nit__(self, callable, finish):
self.callable = callable
self.finish = finish
def __1ter__(self):
return self
def next(self):
result = self.callable()
1t self.finish(result):
raise StopIteration
return result

© 2002 AB Strakt 7/8/2002 19



<

i Where can you use iterables

= basically, wherever you could use
sequences in earlier Pythons:

- for statements

- for clauses of list comprehensions
e built-ins: map, zip, reduce, filter, ...
e type ctors: 1ist, tuple, dict (new!)
e operator in (e.g., if x in y: ...)

e methods (’.join(x), ...)

© 2002 AB Strakt 7/8/2002 20



<

i An aside: dict

= type (and thus also type-constructor) of
dictionaries (much like 1ist, tuple)

= accepts an optional mapping argument
(for a dict D, dict(D) is like D.copy())

= also accepts any iterable of pairs (two-
items tuples) (key, value)
= 'make a set”:

set=dict(zip(seq,seq)) (great for
then doing many fast in tests)

© 2002 AB Strakt 7/8/2002 21




<

i Non-sequence built-in iterables

=« file: iteration on a file object yields
the /ines one by one (must be text...!)

« dict: iteration on a dictionary yields the
dictionary’s keys one by one

= each dictionary d also has methods
d.1terkeys(), d.i1tervalues(),

d.iteritems (), which return iterators

with the same contents as the lists
d.keys(), d.values(), d.items()

© 2002 AB Strakt 7/8/2002 22



<

i Altering-while-iterating dicts

144

Dict methods . keys () &c do “snapshot”:

for k 1n adict.keys():
1t blah(k): del adict[k]

But, iterators don't! So, you cannot code:

for k in adict:
it blah(k): del adict[k]

However, no problem with:

for k 1n adict:
1t blah(k): adict[k] = 23

© 2002 AB Strakt 7/8/2002 23



<

i Need stopIteration ever come?

Not necessarily...:

class Ints:
def __init__(self, start=0, step=1):
self.current = start - step
self.step = step
def __1ter__(self):
return self

def next(self):
self.current += self.step

return self.current
Such unbounded iterators are OK...

© 2002 AB Strakt 7/8/2002 24



<

i Unbounded iterators: yes but...

...Nnotto be used just like this:
for x 1in Ints(7,12):
print X
This would never stop! (overflowError
has gone, now OF promotes int->Tong)
for x in Ints(7,12):
print X
1f x %5 == 0: break
To use unbounded iterators, terminate
the iteration separately and explicitly.

© 2002 AB Strakt 7/8/2002 25



<

i Is there no prev / pushback?

= No! That's the flip side of iterators’
simplicity: they're very lightweight
= Your own iterators can provide any

extras you want (only your code will
know how to use those extras)

= YOU can wrap arbitrary iterators to
provide extras (for your code, only)

© 2002 AB Strakt 7/8/2002 26



<

i pushback iterator-wrapper

class Pushbackwrapper:
def __init__(self, 1t):
self.1t = 1ter(it)
self.q = []
def __i1ter__(self): return self
def next(self):
1f self.q: return self.q.pop(Q)
else: return self.it.next()
def pushback(self, back):
self.qg.append(back)

© 2002 AB Strakt 7/8/2002 27



<

i Generators

= enable by placing at start of module:
from __future__ 1mport generators

= this transforms yield into a keyword

= a generatoris any function whose body
contains one or more statements:

yield <expression>

= (may also have 0+ return, but not
any return <expression>)

© 2002 AB Strakt 7/8/2002 28



<

i Generator mechanics [1]

= calling a generator G does not yet
execute G’s body

= rather, it returns an iterator I wrapping
an “execution frame” for G's body, i.e.:
* a reference to G’s body code
 a set of G's locals (including arguments)
 “point-of-execution” (POE) (at code start)

= how, calling 1.next()...

© 2002 AB Strakt 7/8/2002 29




<

i Generator mechanics [ 2]

= ...each call to 1.next() continues G’s
body code from the last-saved “"POE"

= execution proceeds until it encounters a
yield <expr> statement

= then, it returns the value of <expr> as
the result of I.next()

= execution suspends (locals and POE)

© 2002 AB Strakt 7/8/2002 30



<

i Generator mechanics [ 3]

= if, before a y1eld <expr> executes in
a call to .next(), a return executes,
the iterator raises stopIteration

= falling off the end” is like a return

= after a stopIteration, iterator I can
“forget” the rest of its state (if
I.next() is called again,
StopIteration again)

© 2002 AB Strakt 7/8/2002 31



i Generators are compact...!

def Ints(start=0, step=1):
while True:
yield start
start += step
def SentinelIter(callable, sentin):
while True:
result = callable()
1f result == sentin: return
yield result

© 2002 AB Strakt 7/8/2002 32



<

i Generator equl

valence rule

= change a (bounded) generator into an
equivalent function with these rules...:

* add (e.g.) _Tist=
» change every yie’

'] as the first statement
d <expr> statement

INto _Tist.appenc

(expr)

 change every return statement (including
function end), and raise StopIteration,
INt0 return iter(_list)

= takes more memory, gives same results
= (use: just to help understanding!)

© 2002 AB Strakt 7/8/2002

33



<

i Classic “tree-flatten” example

def flat(tree, scalarp):
for node 1n tree:
1f scalarp(node): yield node
else:
for x 1in flat(node, scalarp):
yield X
Note that defining “scalarp” is not trivial (strings

are iterable, but we usually want to consider
them as “scalar” anyway...)

© 2002 AB Strakt 7/8/2002 34



‘L De-generator'ed “tree-flatten”

def flat(tree, scalarp):
_1ist = []
for node 1n tree:
1f scalarp(node):
_l1st.append(node)
else:
for x in flat(node, scalarp):
_list.append(x)
return 1ter(_list)

© 2002 AB Strakt 7/8/2002 35



‘L Aside: the scalarp predicate

def scalarp(obj):
# deem string-1like objects ‘scalar’
try: obj+’’
except: pass # not string-like, go on
else: return True
# now, ‘scalar’€&-=>‘not i1terable’
try: 1ter(obj)
except: return True
else: return False

© 2002 AB Strakt 7/8/2002 36



<

i [terators may be “lazy”

= an iterator may do “lazy” evaluation
(AKA “just-in-time” evaluation)
= the “lazy” paradigm (AKA the “streams”

paradigm) is central to functional
languages such as Haskell

= iterator are a “foot in the door” for “lazy
evaluation” in Python

© 2002 AB Strakt 7/8/2002 37



i Taking a(nother) Haskell idea

= fundamental stream operations, e.g.:
def take(N, stream):
while N > O:
yield stream.next()
N -= 1
= to “concretize” a bounded stream:
L = list(stream) # built-in!

© 2002 AB Strakt 7/8/2002 38



‘L Sequence Idioms: spreading

import re
wds = re.compile(r’[\w-]+").findall

def bywords(stream, wordsOof=wds):
for 1ine 1n stream:
for w in wordsof(line):
yield w

© 2002 AB Strakt 7/8/2002 39



‘L Sequence Idioms: bunching

def byParagraphs(stream):
p =[]
for 1ine 1n stream:
1f Tine.isspace():
1f p: yield “’.join(p)
p = []
else: p.append(line)
1f p: yield “’.join(p)

© 2002 AB Strakt 7/8/2002 40



<

i Sorting a huge stream

= Classic algorithm “"mergesort”:
* read the stream, a “chunk” at a time
= sort chunk in-memory (Python list sort)
= Write sorted chunk to a temporary file
o merge temporary files back to a stream

= very good fit for streams paradigm
= not all that lazy here (sort can't be...)

© 2002 AB Strakt 7/8/2002 41



‘L Merging sorted streams

def merge(streams):

L = []

for s 1n streams:
try: L.append([s.next(), s.next])
except StopIteration: pass

while L:
L.sort()
yield L[O][O]
try: L[O]J[O0] = L[O]J[1]1O
except StopIteration: del L[O]

© 2002 AB Strakt 7/8/2002 42



i Lines-stream to sorted-pieces

def sortPieces(stream, N=1000%1000):
while True:

chunk = Tist(take(N, stream))
1f not chunk: return
chunk.sort()
tempFile = os.tmpfile()
tempFile.writelines(L)
tempFile.seek(0)
del chunk
yield tempFile

© 2002 AB Strakt 7/8/2002 43



<

i What if items are not lines...?

= just refactor with slight generalization:
def saveLines(lines):
tempFile = os.tmpfile()
tempFile.writelines(lines)
tempFile.seek(0)
return tempFile
def sortPieces(stream, saver, N):

yield saver(chunk)
del chunk

© 2002 AB Strakt 7/8/2002 44



E.g., float items

def saveFloats(floats):
tempFile = os.tmpfile() # win OK too
array.array(‘d’, floats
).tofile(tempFile)
tempFile.seek(0)
return tempFile

def streamFloats(F, N=8*1000%1000):
while True:
buf = array.array(‘d’, F.read(N))
1f not buf: return
for aFloat 1n buf: yield aFloat

© 2002 AB Strakt 7/8/2002 45



i Mergesort: putting it together

def mergesort(stream,
saver=saveLines,
N=1000*1000) :
pcs = sortPieces(stream, saver, N)
for 1tem 1n merge(pcs): yield 1tem

m = mergesort(streamFloats(‘x.dat’,’rb’),
saveFloats, 10%1000%1000)

for x 1n m:

© 2002 AB Strakt 7/8/2002 46



<

i One last little mint...

def makeSaver(typecode):
def saver(data):
tempFile = os.tmpfile()
array.array(typecode, data
).tofile(tempFile)
tempFile.seek(0)
return tempFile
return saver
saveFloats = makeSaver(‘d’)
saveUlongs = makeSaver(‘L’)

© 2002 AB Strakt 7/8/2002 47



	Iterators and Generators
	This Tutorial’s Audience
	This Tutorial’s Style
	Iteration before 2.2
	Iteration before 2.2: yes but...
	The new built-in iter
	Where can you use iterables
	An aside: dict
	Non-sequence built-in iterables
	Altering-while-iterating dicts
	Need StopIteration ever come?
	Unbounded iterators: yes but...
	Is there no prev / pushback?
	pushback iterator-wrapper
	Generators
	Generator mechanics [1]
	Generator mechanics [2]
	Generator mechanics [3]
	Generators are compact...!
	Generator equivalence rule
	Classic “tree-flatten” example
	De-generator’ed “tree-flatten”
	Aside: the scalarp predicate
	Iterators may be “lazy”
	Taking a(nother) Haskell idea
	Sequence Idioms: spreading
	Sequence Idioms: bunching
	Sorting a huge stream
	Merging sorted streams
	Lines-stream to sorted-pieces
	What if items are not lines...?
	E.g., float items
	Mergesort: putting it together
	One last little mint...

