

© 2004 AB Strakt 1

STRAKT

Masquerading and Adaptation
Design Patterns in Python

Alex Martelli

© 2004 AB Strakt 2

STRAKT

This talk's audience...:

 "fair" to "excellent" grasp of Python
and OO development

 "none" to "good" grasp of Design
Patterns in general

 wants to learn more about: DP,
masquerading, adaptation, DPs for
Python, DP/language issues

© 2004 AB Strakt 3

STRAKT

Design Patterns

 rich, thriving subculture of the OO
development culture

 Gamma, Helms, Johnson, Vlissides:
"Design Patterns", Addison-Wesley
1995 ("gang of 4" == "Gof4")

 PLoP conferences & books

© 2004 AB Strakt 4

STRAKT

...but also...
 Design Patterns risked becoming

a "fad" or "fashion" recently
• cause: the usual, futile search for

the "silver bullet"...!
•

 let's not throw the design patterns
out with the silver bullet!

Image has been scaled down. See full-size image.

www.avshop.com/productimages/ products/4514-300.jp
277 x 300 pixels - 8k
This image may be subject to copyright.

Below is the image in its original context on the page: www.avshop.com/ catalog/product.html?productid=451

Remove Frame

Back to Results

Catalog Quick Order
Enter the product code

from your AvShop
Catalog.

Buy Now

Hello! Sign in to access
subscriptions or to get
personalized
recommendations. New to
AvShop? Start here.

Email:

Password:

Login

beam allows you to see clearly in the

darkest places. The body of the light is

under 2" long and less than 1/2" in

diameter. The body is attached to a 1"

silver chain with a 3/4" diameter spring-

loaded keyring.

Perfect for map and chart reading as well

as illumination of door locks and

keyholes. Safely illuminates paths and

walks.

The easily replaceable, long lasting

button-cell batteries last 10 times longer

than conventional batteries, making Silver

Bullet™ the most reliable, powerful, and

economical light for all uses.

OPERATING INSTRUCTIONS

1. Push button and hold to turn light ON.

2. Release button to turn OFF.

© 2004 AB Strakt 5

STRAKT

DP myths and realities (1)

 DPs are not independent from
language choice, because: design
and implementation must interact
(no to "waterfall"...!)

 in machine-code: "if", "while",
"procedure" ... are patterns!

 HLLs embody these, so they are
not patterns in HLLs

© 2004 AB Strakt 6

STRAKT

DP myths and realities (2)

 many DPs for Java/C++ are
"workarounds for static typing"

 cfr Alpert, Brown, Woolf, "The DPs
Smalltalk Companion" (AW)

 Pythonic patterns = classic ones,
minus the WfST, plus (optionally)
exploits of Python's strengths

© 2004 AB Strakt 7

STRAKT

DP myths and realities (3)
 formal-language presentation

along a fixed schema is useful
 it is not indispensable

• mostly a checklist "don't miss this"
• and a help to experienced readers

 nor indeed always appropriate
• always ask: who's the audience?

© 2004 AB Strakt 8

STRAKT

DP myths and realities (4)
 Design Patterns are not "silver bullets"
 they are, however, quite helpful IRL
 the name by itself already helps a lot!

• like "that guy with the hair, you know, the Italian..."
• vs "Alex"

 even when the DPs themselves dont help,
 study and reflection on them still does

• "no battle plan ever survives contact wit the enemy"
• and yet drawing up such plans is still indispensable

© 2004 AB Strakt 9

STRAKT

DP write-up components:

 name, context, problem
 forces, solution, (examples)
 results, (rationale), related DPs
 known uses: DPs are discovered,

not invented!
 DPs are about description (and

suggestion), not prescription

© 2004 AB Strakt 10

STRAKT

Two groups of structural DPs

 Masquerading: an object
"pretends to be" (possibly
fronts/proxies for...) another

 Adaptation: correct "impedance
mismatches" between what's
provided and what's required

© 2004 AB Strakt 11

STRAKT

DP "Adapter"
 client code γ requires a certain protocol C
 supplier code σ provides different protocol

S (with a superset of C's functionality)
 adapter code α "sneaks in the middle":

• to γ, α is supplier code (produces protocol C)
• to σ, α is client code (consumes protocol S)
• "inside", α implements C (by means of calls to S on σ)

("interface" vs "protocol": "syntax" vs "syntax
+ semantics + pragmatics")

© 2004 AB Strakt 12

STRAKT

Python toy-example Adapter
 C requires: method foobar(foo, bar)
 S provides: method barfoo(bar, foo)
 a non-OO context is of course possible:
def foobar(foo,bar):
 return barfoo(bar,foo)
 in OO context, say we have available as σ:
class Barfooer:
 def barfoo(self, bar, foo): ...

© 2004 AB Strakt 13

STRAKT

Object Adapter
 per-instance, by wrapping & delegation:
class FoobaringWrapper:
 def __init__(self, wrappee):
 self.w = wrappee
 def foobar(self, foo, bar):
 return self.w.barfoo(bar, foo)

foobarer = FobaringWrapper(barfooer)

© 2004 AB Strakt 14

STRAKT

Class Adapter
 per-class, by subclassing & self-delegation:
class Foobarer(Barfooer):
 def foobar(self, foo, bar):
 return self.barfoo(bar, foo)

foobarer = Foobarer(some,init,parms)

© 2004 AB Strakt 15

STRAKT

Adapter: some known uses
 shelve: adapts "limited dict" (str keys

and values, basic methods) to fuller dict:
• non-str values via pickle + UserDict.DictMixin

 socket._fileobject: socket to filelike
• has lot of code to implement buffering properly

 doctest.DocTestSuite: adapts doctest's
tests to unittest.TestSuite

 dbhash: adapts bsddb to dbm
 StringIO: adapts str or unicode to filelike

© 2004 AB Strakt 16

STRAKT

Adapter observations
 real-life Adapters may require lots of code
 mixin classes help adapting to rich

protocols (by implementing advanced
methods on top of fundamental ones)

 Adapter occurs at all levels of complexity,
from tiny dbhash to many bigger cases

 in Python, Adapter is not just about classes
and their instances (by a long shot...)

© 2004 AB Strakt 17

STRAKT

DP "Facade"
 existing supplier code σ provides rich,

complex functionality in protocol S
 we need a simpler "subset" C of S
 facade code Φ implements and supplies C

(by calling S on σ)

© 2004 AB Strakt 18

STRAKT

Python toy-example Facade
class LifoStack:
 def __init__(self):
 self._stack = []
 def push(self, datum):
 self._stack.append(datum)
 def pop(self):
 return self._stack.pop()

© 2004 AB Strakt 19

STRAKT

Facade vs Adapter
 Adapter is mostly about supplying a "given"

protocol required by client-code
• (sometimes, it's about homogeinizing existing suppliers

in order to gain polymorphism)

 Facade is mostly about simplifying a rich
interface of which only a subset is needed

 of course they do "shade" into each other
 Facade often "fronts for" several objects,

Adapter typically for just one

© 2004 AB Strakt 20

STRAKT

Facade: some known uses
 asynchat.fifo facades for list
 dbhash facades for bsddb

• ...also given as Adapter known-use...!-)
 sets.Set mostly facades for dict

• also adds some set-operations functionality
 Queue facades for list + lock
 os.path: basename and dirname facade for
split + indexing; isdir &c facade for
os.stat + stat.S_ISDIR &c

© 2004 AB Strakt 21

STRAKT

Facade observations
 real-life Facades may contain substantial

code (simplifying the protocol is key...)
 interface-simplification is often mixed in

with some small functional enrichments
 Facade occurs at all levels of complexity,

from tiny os.path.dirname to richer cases
 inheritance is never really useful here

(since it can only "widen", not "restrict")

© 2004 AB Strakt 22

STRAKT

Adapting/facading callables
 callables (functions, methods, ...) play a

very large role in Python programming
• they're first-class objects
• Python doesn't force you to only use classes...!

 a frequently needed adaptation (may be
seen as facade): pre-fix some arguments

 most often emerges in callback systems
 widely known as the "Currying" DP

• not pedantically perfect, but then, DP naming...

© 2004 AB Strakt 23

STRAKT

"Currying" in Python
 typical case: btn.setOnClick(acallable)

• will call acallable() [[maybe acallable(evt)]]

• how do we make it call foo(23)?

• btn.setOnClick(lambda: foo(23))
def curry(f, *a):
 def g(*b): return f(*(a+b))
 return g

 btn.setOnClick(curry(foo, 23))
 best design...: btn.setOnClick(foo, 23)

FAQ(Only Japanese)

Bob & Angie >> Recipe

Recipe

Curry ru

Basic Recipes

Curry rice

Ingriedents: (4 servings)

6 cups rice, 300g meat (block of beef thigh), 1 carrot, 2 potatos, 2 onions,
*curry ru (premade pakcage)*120g, salt, pepper, 20g butter, salad oil.

Rakkyo

Fukujinzuke

Preparation:

1. Make rice (harder than usual) -> see How to make rice.
2. cut meat into bite size pieces, shake salt and pepper over it.
3. Cut onion vertically cut halves into rough slices.
4. Peel potatos,cut in half and into triangular pieces of 2-4.
5. Cut carrot in the same way as potatos.

How to make:

1. In a skillet put oil and butter, turn on fire.
2. Add meat, fry till surface is browned.
3. Add onion, fry till translucent.
4. Add carrots and potatos, fry throughly then add water.
5. When it come to a boil remove foam from surface, boil till vegetables

are soft.
6. Turn off heat, break paste (block) into small pieces and put in.
7. Simmer on a low fire till curry paste is melted entirely.
8. Put rice on dishes put curry on rice.

Serve with:

Garnish with rakkyo, pickles, fukujinzuke.

© 2004 AB Strakt 24

STRAKT

Bridge
♠ AKQJT987 ♠ AKQJT987
♥ 62 ♥ 62
♦ 54 ♦ 543
♣ 73 ♣ 7
 "The Bridge World" January and
February 2000 issues, "How Shape
Influences Strength" by A. Martelli

vs

© 2004 AB Strakt 25

STRAKT

...oops!...
 ah, not that Bridge...?!

...that's [just a bit] more like it...

© 2004 AB Strakt 26

STRAKT

DP "Bridge"
 several (N1) realizations ρ of abstraction A,
 may each use any one of several (N2)

implementations ι of functionality F
 we don't want to code N1 * N2 cases
 so we make abstract superclass A of all ρ

hold a reference R to (an instance of)
abstract superclass F of all ι, and...

 ...make each ρ use any functionality from F
(thus, from a ι) only through R

© 2004 AB Strakt 27

STRAKT

Python toy-example Bridge
class AbstractParser:
 def __init__(self, scanner):
 self.scanner = scanner

class ExprParser(AbstractParser):
 def expr(self):
 ...t = self.scanner.next()...
 ...self.scanner.push_back(t)...

© 2004 AB Strakt 28

STRAKT

Pythonic peculiarities of Bridge
 often no real need for an abstract base

class for the "implementation"
• just rely on signature-based polymorphism
• Python inheritance is mostly about handy code reuse

 each ρ can access self.R.amethod directly
 or you can proxy with A.amethod...:

• def amethod(self,*a): return self.R.amethod(*a)

 then have each ρ access self.amethod
• respects "Demeter's Law" ("only one dot")

© 2004 AB Strakt 29

STRAKT

Bridge: some known uses
 htmllib: HTMLParser → Formatter

• but: not really meant for subclassing
 formatter: formatter → writer

• NullFormatter / AbstractFormatter "unrelated"

• NullWriter baseclass not technically "abstract"
(provides empty implementations of methods)

 xml.sax: reader(parser) → handlers
• multiple Bridge's -- one per handler

 email: Parser -> Message
• holds class, not instance

© 2004 AB Strakt 30

STRAKT

Advanced known-use of Bridge
 SocketServer std library module:
 BaseServer is the abstraction
 BaseRequestHandler is the implementation

abstract-superclass
 ...with some typical pythonic peculiarities:

• also uses mix-ins (for threading, forking, ...)
• A holds the very class F, instantiates it per-request, not

just an instance of F

© 2004 AB Strakt 31

STRAKT

Bridge observations
 Bridge occurs mostly for substantially

complex and rich cases
 inheritance used only occasionally in

Python Bridge cases (and when used may
be from a technically non-abstract class)

 often reference R is to class, not instance
• affords easy repeated instantiation
• no KU found, but: state might be kept in a Memento

© 2004 AB Strakt 32

STRAKT

Pydioms: Holder vs Wrapper
 Holder: object O has subobject S as an

attribute (may be a property), that's all
• use as self.S.method or O.S.method

 Wrapper: holder (often via a private
attribute) plus delegation (use O.method)
• explicit: def method(self,*a):
 return self._S.method(*A)
• automatic (typically via __getattr__)...:
def __getattr__(self, name):
 return getattr(self._S, name)

© 2004 AB Strakt 33

STRAKT

Holder vs Wrapper + and -
 Holder: simpler, more direct and immediate
 low coupling (and doubtful cohesion...!)

between O and S
 high coupling between O's clients and S

(and O's internals...), lower flexibility
 Wrapper: slightly fancier, somewhat indirect
 high coupling (and hopefully cohesion...!)

between O and S
• automatic delegation helps with that

© 2004 AB Strakt 34

STRAKT

DP "Decorator"
 client code γ requires a certain protocol C
 supplier code σ provides exactly protocol C
 however, we also want to insert some

small addition or semantic modification
• quite possibly "pluggable" in/out during runtime

 decorator code δ "sneaks in the middle":
• δ wraps σ, both consumes and produces C
• may intercept, modify, (add a little), delegate, ...
• γ uses δ, just as it would use σ

© 2004 AB Strakt 35

STRAKT

Python toy-example Decorator
class fullinesfile:
 def __init__(self, *a, **k):
 self.f = file(*a, **k)
 self.buf = ''
 def write(self, data):
 lns=(self.buf+data).splitlines(True)
 if lns[-1][-1]=='\n': self.buf=''
 else: self.buf = lns.pop(-1)
 self.f.writelines(lns)

© 2004 AB Strakt 36

STRAKT

Decorator: some known uses
 gzip.GzipFile decorates file with

compression / decompression (using zlib)
 multifile.MultiFile decorates a MIME

multipart file (each part read separately)
 threading.RLock decorates thread.Lock

with re-entrancy (and "ownership" concept)
• Semaphore, even Condition, also kinda decorators

 codecs stream classes decorate file with
generic encoding and decoding

© 2004 AB Strakt 37

STRAKT

Decorator observations
 "pure" decorator (without some small

additions to the protocol) is rare in Python
 file/stream objects are favourite targets for

Python decorator uses
 Decorator typically occurs in reasonably

simple cases
 dynamic on/off snap-ability not often used

© 2004 AB Strakt 38

STRAKT

DP "Proxy"
 client code Υ would be just about fine with

accessing some "true" object τ
 however, some kind of issue interferes:

• we need to restrict access (e.g. for security)
• object τ "lives" remotely or in some persisted form
• we have lifetime/performance issues to solve

 proxy object π "sneaks in the middle":
• π wraps τ, may create/delete it at need
• may intercept, check calls, delegate, ...
• γ uses π, just as it would use τ

 MONDAY, JUNE 7, 104

BRUCE CAMPBELL ONLINE > FILMOGRAPHY > 1994

 Search

 GOOGLE BRUCE CAMPBELL ONLINE

SITE MENU

LINKS

 Bubba Ho Tep

 IMDB

Official BC
Sounds

 Deadites Online

 Brisco Guidebook

 Becker Films

Ladies of the Evil
__Dead

 Anchor Bay

Detroit Film
__Center

FILMOGRAPHY: 1994
1982 · 1983 · 1985 · 1987 · 1988 · 1989 · 1990 · 1991 · 1992 · 1993 · 1994 · 1995 · 1996 · 1997 · 1998 · 1999 · 2000 · 2001 · 2002 ·

2003 · 2004

BRISCO COUNTY JR. · HUDSUCKER PROXY

THE HUDSUCKER PROXY

 Role: "Smitty"
Writers: Ethan Coen, Joel Coen, & Sam Raimi
Directors: Joel Coen & Ethan Coen

"A zany Coen Bros/Sam Raimi fairy tale about a bumbling idiot who rises to the
top of the corporate world. I played Smitty, a fast-talking, Lucky Strike-
smoking newsroom schmoe." -BC

Availability:
DVD The Hudsucker Proxy
VHS The Hudsucker Proxy

Screenshot Courtesy Of Peggy
Kuntzleman

Page updated on March 1, 2004

Copyright © Campbell Entertainment
Website designed and maintained by Kiffington Industries

© 2004 AB Strakt 39

STRAKT

Python toy-example Proxy
class ProxyFor:
 def __init__(self, cls, forb=(),*a,**k):
 self._m = cls, a, k; self._f = forb
 def __getattr__(self, name):
 if name in self._f:
 raise AttributeError
 if not hasattr(self, '_x'):
 cls, a, k = self._m
 self._x = cls(*a, **k)
 return getattr(self._x, name)

© 2004 AB Strakt 40

STRAKT

Proxy: some known uses
 Bastion used to proxy for any other object

in a restricted-execution context
 shelve.Shelf's values proxy for persisted

objects (getting instantiated at-need)
 xmlrpclib.ServerProxy proxies for a

remote server (not for a Python object...)
 weakref.proxy proxies for any existing

object but doesn't "keep it alive"

© 2004 AB Strakt 41

STRAKT

Proxy observations
 a wide variety of motivations for use:

• controlling access
• remote or persisted objects
• instantiating only at-need
• other lifetime issues

 correspondingly wide range of variations
 Python's automatic delegation and "type

agnosticism" make Proxy a real snap
 wrapping and proxying are quite close

© 2004 AB Strakt 42

STRAKT

Protocol Adaptation
 PEP 246
 any object might "embody" a protocol

• e.g. Zope 3's zope.interface -- or anything else, really...
 adapt(component, protocol[, default])

• checks if component directly implements protocol
• checks if protocol knows how to adapt component
• else falls back to a registry of adapters indexed by

type(component) [[or otherwise, e.g. by URI]]
• last ditch: returns default or raises an exception

