{~ What's new in Python 2.3

Alex Martelli

© 2003 AB Strakt 1

- _ This talk's audience...:

= 'fair’ to "excellent" grasp of
Python and Python 2.2

= 'none" to "fair" grasp of Python 2.3

= wants to learn more about:
Python 2.3 / upgrading benefits
and issues

© 2003 AB Strakt 2

& This talk's outline...:

=

= generalia (performance, ...)
= enhancements to 2.3's built-ins
= standard library: enh. modules

= enhancements to: importing,
threading, pickling, distutils,
internals (memory alloc, gc)

= new modules (‘major'/'other")

P
v
iy
]

© 2003 AB Strakt 3

AL Python 2.3 roadmap
S
= Beta 1 was out in late April
= Beta 2 was out in July

= final 2.3 will be out in August

© 2003 AB Strakt 4

—

a~ Should I upgrade"...?

= Yes!
= the Python language is very stable

= You can keep programming to 2.2
and get 2.3's benefits

= about 15%-20% extra performance!
= your programs won't break!
= check your programs at once...!!!

© 2003 AB Strakt 5

a4+ What benefits in upgrading?
S

= Performance

= bug fixes (more than in 2.2.3!)

= generators always enabled, w/o
from __future__ 1mport generators

= minor enhancements to built-ins

» slicing,bool,in,file,dict,enumerate,sum
= many standard library enhancements
= tools (timeit, new IDLE, ...)

© 2003 AB Strakt 6

a- What issues with upgrading?

=

= new bugs? [current Cygwin troubles]

= generators always enabled, w/o
from __future__ import generators

= int/long unification is proceeding
= Non-ASCII sources

= sundry minor differences
e unlikely to bite: assigning to None, ...

= NO Bastion / rexec
» were unsafe in 2.2 (not in 2.2.3 either!)

© 2003 AB Strakt 7

ar- Extra performance

= new module timeit lets you measure
micro-performance accurately

= timeit.py runs fine under 2.2, too
= a precious little new tool

= SO, don't wait: download it now!

= http://cvs.sourceforge.net/cgi-bin/
viewcvs.cgil/*checkout*/python/python/
dist/src/Lib/timeit.py?rev=1.9&content-
type=text/plain (if you don't have 2.3...)

© 2003 AB Strakt 8

‘: timeit.py example, 2.2 vs 2.3

$ python2.2 -0 \
> /usr/local/lib/python2.3/t1meit.py \
> '112233445566778899 *
> 112233445566778899'
1000000 loops, time: 1.151 usec
$ python2.3 -0 \
> /usr/local/lib/python2.3/timeit.py \
> '112233445566778899 *
> 112233445566778899'
- 1000000 loops, time: 0.665 usec

© 2003 AB Strakt 9

‘: and by the way...: X*x vs x**2

$ python2.2 -0 \

> /usr/local/lib/python2.3/t1meit.py \
> '112233445566778899 ** 2

1000000 loops, time: 2.727 usec

$ python2.3 -0 \

> /usr/local/lib/python2.3/timeit.py \
> '112233445566778899 ** 2

1000000 loops, time: 1.349 usec

(this has long been known to users of languages with
** operators, such as Fortran -- x*x is faster!)

© 2003 AB Strakt 10

ar~ minor language-level changes

= MRO of new-style classes enhanced

= hames of extension types now
include the module's name

= __name__ & __bases__ can now
be re-bound on new-style classes
(always could be on classic ones)

= super built-in has been enhanced

© 2003 AB Strakt 11

‘: 2.3: extended slicing, bool, str 'in’

$ python2.3 -c 'print "ciao"[::-1]"

oaic

$ python2.3 -c 'print "arrivederci"[::2]"
arvdri

$ python2.2 -c 'print True, False'

10

$ python2.3 -c 'print True, False'

True False

$ python2.3 -c 'print "riv" in "arrivo"'
~ True

g
il

© 2003 AB Strakt 12

‘: 2.3: extended-slicing assignment

>>> X = li1st('arrivederci')
>>> ''.,join(x[::2])

‘arvdri'

>>> ''.join(x[::-2])
"irdvra’

>>> X[::2] = x[::-2]
>>> '',jo1n(x)

"irrideverca’

Note: assignment to an extended slicing cannot
change the length of the list

‘ss‘ E

© 2003 AB Strakt 13

": 2.3: 'slice’ built-in type

>>> # Can 1ndex sequences (not dicts):

>> a = slice(l, 6, 2)

>>> print 'capperi'[a]

apr

>>> # has 'indices' method as helper to

>>> # 1implement your own sequences' slicing
>>> print a.indices(9), a.indices(4)

(1, 6, 2) (1, 4, 2)

>>> range(*a.indices(4))

« {3]

© 2003 AB Strakt 3

‘: 2.3 enhancements to 'file'

= new opening mode 'U’ (‘universal
newlines' -- accepts \r, \n, \r\n)

= a file IS, not just HAS, an iterator
sample task: "emit a file, skipping 1its
first 1ines up to the first white one"
f = open('some.txt', 'U")
for 1ine 1n f:

1f line.isspace(): break
for 1ine in f:

print line,

© 2003 AB Strakt 15

a: 2.3 enhancements to 'list’

e

Tist.insert(i, value) finally fixed

wheni <0 ...

X = range(5)

x.insert(-1, 9)

print X

1n 2.2 emitted: [9, O, 1, 2, 3, 4]
1n 2.3 emits: [0, 1, 2, 3, 9, 4]

~ list.sort made faster and stable

<@ |
4 |

© 2003 AB Strakt 16

A= Changes to 'int' ('long' unif.)

$ python2.2 -c 'print int(123456%123456)"
warning: integer multiplication
overflowError: long int too large to convert
$ python2.3 -c 'print int(123456%123456)"
15241383936

$ python2.3 -c 'print OXFFFFFFFF'

<string>:1: Futurewarning: hex/oct constants

> sys.maxint will return positive values 1n
Python 2.4 and up

«sj@ §

© 2003 AB Strakt 17

‘: 2.3 enhancements to 'dict’

>>> # two new ways to build a dict:
>>> dict(a=23,b=45,c=67)

{'a':23, 'b':45, 'c':67}

>>> dict.fromkeys(range(4), 'ho')
{0:'ho', 1:'ho', 2:'ho', 3:'ho'}
>>> # one new way to pull a dict apart:
>>> dd = dict(a=23,b=45,c=67)
>>> dd.pop('b")

45

>>> dd

{'a':23, 'c':67}

. §

© 2003 AB Strakt 18

‘: 2.3 dict.pop: optional 2nd arg
S

>>> dd = dict(a=23,b=45,c=67,d=89)

>>> dd.pop('z') # raises KeyError
>>> dd.pop('z', 11) # dd unmodified
11

>>> dd.pop('c', 11) # dd['c'] removed
67

>>> dd

{'a':23, 'b':45, 'd':89}

-

© 2003 AB Strakt 19

a- 2.3 new built-in: enumerate

>>> for x in enumerate('ciao'): print Xx,

0,'c’) (1,"1") (2,'a') (3,'0")
>>> # just like...:
>>> def enumerate(iterable):
index = 0
for 1item 1n iterable:
yield index, 1tem
1tem = 1tem + 1

© 2003 AB Strakt 20

‘: 2.3 new built-in: sum

>>> sum(range(5))
10

Like reduce(operator.__add__,range(5)), but:
$ python timeit.py -s'x=range(5)' \

> 'sum(s)'’

1000000 Toops, best of 3: 1.64 usec perloop
$ python timeit.py -s'x=range(5)' \

> 'reduce(operator.__add__, s)'’

1000000 loops, best of 3: 4.08 usec perloop

Numbers only (not strings: use ".join(s) instead!)
There won't be a 'product’ built-in to match!

© 2003 AB Strakt 21

a: 2.3 non-ASCII sources

e T

$ cat a.py

print "ola"

$ python2.3 a.py

sys:1l: Deprecationwarning: Non-ASCII
character '\xel' in file a.py on 1line 1 [&c]
ola

$ cat b.py

-*- coding: Latin-1 -*-

print "ola"

$ python2.3 b.py

© 2003 AB Strakt 22

‘: 2.2/2.3: restricted execution

= rexec & Bastion not safe in 2.2
= hew-style classes not guarded

= both modules ripped out of 2.3 and
2.2.3 -- currently no safe way to
execute untrusted code

= Some hope for the future...:
http://www.procoders.net/download.php?
fname=SandBox.py

© 2003 AB Strakt 23

4= 2.3: enhanced modules [1]

= socket: s.settimeout(t)
= array: added 'u’, +=, *=
= minidom: d.toxml(encoding="...")

= random: random.sample(popul, k)
» module now uses Mersenne Twister algorithm

= math: math.degrees, math.radians
= bsddb: supports latest BerkeleyDB
= pyexpat: parsers can buffer_text

© 2003 AB Strakt 24

4= 2.3: enhanced modules [2]

= shutil: shutil.move(src, dest)
= readline: new history functions

= time: time.strptime is now cross-
platform, pure-Python, solid

= UserDict: DictMixin class helps you
make your mappings more canonic

= codecs: register_error, lookup_error,
new 'backslashreplace’ and
'xmlcharrefreplace' strategies

© 2003 AB Strakt 25

a- 2.3: import enhancements

= Nhew sys attrs: meta_path lists
importers tried before the path,
path_hooks lists importer-factories
tried on each dir on the path,
1mporter_cache caches those

= an /importer's method find_module

returns a /oader object, w/method
load_module

= already used (via z1pimpo rtR to
import modules from any zipfile

© 2003 AB Strakt 26

‘: 2.3: threading enhancements

= new modules dummy_thread and
dummy_threading
 applications of Null Object DP

* same API as thread and threading, but no-
operation implementations

» handy for non-threading platforms

= Tkinter threading enhanced
» cross-thread access now either works,
* Or raises a clear exception

= interrupting other threads (w/C API)

© 2003 AB Strakt 27

a: 2.3: pickling enhancements

= pickling now takes a protoco/
argument rather than a binary flag

= protocol 0 is the old text one
= protocol 1 the old binary one
= new protocol 2 is more efficient

= hew support for __getstate__,
__setstate__, __getnewargs__

= unpickling officially declared unsafe
(don't unpickle untrusted data!)

© 2003 AB Strakt 28

A= 2.3: distutils enhancements

= metadata now supported -- can be
registered at www.python.org/pyp1
* new classifiers attribute w/trove strings

= Extension class can have depends

= distutils now checks some current
environment variables, so you can
override Python's configuration
settings (CC, CPP, CFLAGS, LDFLAGS)

© 2003 AB Strakt 29

ac 2.3: internals enhancements

= Pymalloc is now on by default

= memory allocation routines now
cleanly classified into 2 families:
» PyMem_{Malloc, Realloc, Free}: raw memory
» PyObject_{..., New, NewVar, Del}: objects

= extra debugging; pymemcompat.h
= garbage collector interface changed
= can easily build 11bpython2.3.so0

© 2003 AB Strakt 30

<

- 2.3: "major" new modules

= datetime
= Sets

= heapg

= jtertools

= |ogging

© 2003 AB Strakt 31

‘: 2.3: other new modules

= bz2: like gzip, but for the bzip2 library

= optparse: like getopt, but with more
power and flexibility

= textwrap: reformat text into
paragraphs "intelligently”

= platform: platform-version info
= tarfile: read/write .tar archive files
= CSV: r/w "comma-separated” files

© 2003 AB Strakt 32

a- hew module: datetime

= date/time arithmetic and formatting

= always Gregorian-calendar
= N0 "leap seconds" support

= datetime objects & timezones/dst:

* naive datetime object: ignores

'z/dst

 aware datetime object: has x.tzinfo
attribute (of datetime.tzinfo abstract
class: you must supply concrete subclass)

- date and timedelta objects don't care

© 2003 AB Strakt 33

y _ datetime.timedelta

= stores normalized integer days,
seconds, microseconds
e resolution = 1 microsecond
- range = +/- 1 billion days
= may also build with weeks, hours,
minutes, milli1seconds, floats
« t1medelta normalizes and rounds

= supports limited "sensible" arithmetic,
comparisons, hashing, pickling

© 2003 AB Strakt 34

- _ datetime.date

= stores year, month, day
 range = years 1 - 9999

= class method (factories) today,
fromtimestamp, fromordinal

= supports limited "sensible" arithmetic,
str, comparisons, hashing, pickling

= many instance methods (accessors)
e.g. toordinal, weekday, ...

© 2003 AB Strakt 35

- _ datetime.time

= stores hour, minute, second,
microsecond, tzinfo

= class method (factories) today,
fromtimestamp, fromordinal

= supports str, comparisons, hashing,
pickling

= many instance methods (accessors)
e.g. strftime, isoformat, ...

© 2003 AB Strakt 36

a _ datetime.datetime

= subclasses date, adds a t1me

= class method (factories) now,
fromtimestamp, combine, ...

= supports limited "sensible" arithmetic,
str, comparisons, hashing, pickling

= many instance methods (accessors)
e.g. date, time, timetz, ...

© 2003 AB Strakt 37

- _ datetime.tzinfo

= abstract class -- your app must
supply suitable concrete subclasses if
you want to handle timezones, dst &c

= methods you may have to override:
o utcoffset(self, date) offs from UTC (minutes)
o dst(self, date) DST adjustment (minutes)
» tzname(self, date) name string for timezone

= tz.utcoffset(d)-tz.dst(d)
should be the same for any date d

© 2003 AB Strakt 38

a- hew module: sets

= sets of hashable elements
=X 1n s, len(s), for x 1n s

= unordered collections, not sequences
* no indexing, no slicing

= class Set is mutable (-> no hash)

= class ImmutableSet is immutable
(-> hashable, allows "set of sets")

= abstract base class BaseSet

© 2003 AB Strakt 39

A= Methods common to all sets

S

= 1Ssubset, 1ssuperset

= union, 1ntersection,
difference (aka | & -)

= symmetric_difference (aka A)
= copy (shallow copy)
»1f x 1n s,for x 1n s, len(s)

= rich comparisons (not cmp!)
« S<=t Means s.issubset(t)

© 2003 AB Strakt 40

‘: Methods of mutable sets

=

= union_update, etc(aka |= &=
-= A= -- in-place updates)

= add, remove (may raise
KeyError), discard (won't raise)

= Clear, pop, update

1 ?
o |

© 2003 AB Strakt 41

ar- hew module: heapdg

= functions to treat a list as a priority-
queue ("heap")
= heapify (L) (O(N), in-place)
= heappush(L,x), heappop(L)
= heapreplace(L, x) -- like:
r = heappop (L)

heappush(L, Xx)
return r

© 2003 AB Strakt 42

a- making a class from heapq

import heapq
class PriorityQueue(object):
def __1nit__(self, seq=[]):
self.1 = Tist(seq)
heapqg.heapify(self.1)
def __Ten__(self):
return len(self.1)
def push(self, x):
heapqg.heappush(self.1, x)
def pop(self):
return heapq.heappop(self.1)

© 2003 AB Strakt 43

a- hew module: itertools

= "iterator building-block™ generators

«» chain(*i1ts), count(n=0),
cycle(i1t), dropwhile(p, 1t),
1filter(p, 1t), 1map(f, *1ts),
islice(it, ...), 1zip(*its),
repeat(x, times=None),
starmap(f, 1t), takewhile(p,
1t)

= all highly composable & efficient

© 2003 AB Strakt 44

ar- an itertools speed surprise

S

For the simplest iteration's overhead...:

$ python timeit.py \

> 'for x 1n range(9999): pass'

1000 Toops, best of 3: 1.41e+03 usec

$ python timeit.py \

> 'for x 1n xrange(9999): pass'

1000 Toops, best of 3: 1.11e+03 usec

$ python timeit.py -s'import itertools' \

> 'for x 1n i1tertools.repeat(0,9999): pass
| 1000 loops, best of 3: 921 usec

© 2003 AB Strakt 45

ar- hew module: logging

= class Logger instances are "loggers”,
with hierarchical structured-names

= each logger and message has a level
(debug, info, warning, error, critical,
+ optional custom ones) for filtering

= unfiltered msgs are LogRecord insts

= dispatched via handlers (filter +
disposition: file, socket, mail, ...)

© 2003 AB Strakt 46

“: a dirt-simple use of 1ogging

1mport logging

1f user not 1n knownusers:
logging.warning(
"User %s not known"
% user)

© 2003 AB Strakt 47

	What's new in Python 2.3
	This talk's audience...:
	This talk's outline...:
	Python 2.3 roadmap
	"Should I upgrade"...?
	What benefits in upgrading?
	What issues with upgrading?
	Extra performance
	timeit.py example, 2.2 vs 2.3
	and by the way...: x*x vs x**2
	minor language-level changes
	2.3: extended slicing, bool, str 'in'
	2.3: extended-slicing assignment
	2.3: 'slice' built-in type
	2.3 enhancements to 'file'
	2.3 enhancements to 'list'
	Changes to 'int' ('long' unif.)
	2.3 enhancements to 'dict'
	2.3 dict.pop: optional 2nd arg
	2.3 new built-in: enumerate
	2.3 new built-in: sum
	2.3 non-ASCII sources
	2.2/2.3: restricted execution
	2.3: enhanced modules [1]
	2.3: enhanced modules [2]
	2.3: import enhancements
	2.3: threading enhancements
	2.3: pickling enhancements
	2.3: distutils enhancements
	2.3: internals enhancements
	2.3: "major" new modules
	2.3: other new modules
	new module: datetime
	datetime.timedelta
	datetime.date
	datetime.time
	datetime.datetime
	datetime.tzinfo
	new module: sets
	Methods common to all sets
	Methods of mutable sets
	new module: heapq
	making a class from heapq
	new module: itertools
	an itertools speed surprise
	new module: logging
	a dirt-simple use of logging

