i Python Metaclasses

S

Alex Martelli

© 2003 AB Strakt 1

- _ This talk's audience...:

= "fair" to "excellent" grasp of Python
and OO development

= 'none" to "good" grasp of
Metaclasses

= wants to learn more about:
Python's OO underpinnings,
Metaclasses, custom Metaclasses

© 2003 AB Strakt 2

a~ What's a metaclass

= type(x) is class (or type) of x

= type(type(x)) is the metaciass (or
metatype) of X (sometimes also called "the
metaclass of type(x)" -- not strictly-correct usage)

= for any built-in type or new-style class
X: type(X) 1s type

= for any classic-class X:
type(X) 1s types.ClassType

© 2003 AB Strakt 3

) ' key book...:

= 'Putting Metaclasses to Work", by Ira
Forman and Scott Danforth (Addison-
Wesley 1998)

= strong influence on Python 2.2 & later
= based on IBM SOMobjects & C++

= out of print, but available from used-
books dealers & the like -- get it iff
you're really keen to explore further

© 2003 AB Strakt 4

y _ the class statement

A class statement is (neat, elegant
syntax for) a metaclass call :

class Name/(b) /:

bindings into a dict d
-->
Name=metacl/ass('Name' ,b,d)
So -- how is metac/ass determined...?

© 2003 AB Strakt 5

a5 Determining the metaclass [0]

—

4-step decision procedure:

[1] explicit __metaclass__
[2] inherited metaclass

[3] global __metaclass___
[4] classic-by-default

© 2003 AB Strakt 6

p e Determining the metaclass [1]
:ﬁji
[1]:if '_metaclass__" isakeyin d,
the corresp. value is the metaclass:

class Name/(b) /:

__metaclass. =M
-=>
M is the metaclass

© 2003 AB Strakt 7

a- Determining the metaclass [2]

[2]: otherwise, if b is non-empty (the
class has some bases), the metaclass is
type(b[0]) (type of the first base*):

class Name(object): pass
-->
the metaclass is: type(object)

[i.e., type]
* there's a subtlety w/types.ClassType...

© 2003 AB Strakt 8

p Determining the metaclass [3]
:I%

[3]: otherwise, if __metaclass__isa

global variable, the variable's value is

the metaclass:
__metaclass. =M
class Name: pass

-->
M is the metaclass

© 2003 AB Strakt 9

‘: Determining the metaclass [4]

_—

[4]: otherwise, the metaclass is

types.ClassType ("classic-by-
default")

class Name: pass
-—->
the metaclass is types.ClassType

© 2003 AB Strakt 10

&= A subtlety w/types.ClassType
:ﬂ‘i

class X(old,new): pass
assert type(X) 1s type # how?!

= types.ClassType, when called,
checks all bases, and delegates to the
first base that's not a classic class

= thus: a class is classic only if a// of its
bases are classic classes

© 2003 AB Strakt 11

- _ When the metaclass is called...

= it must generate an instance (normally
"of itself"; normally a new one) -- just
like any other call to any class or type

= calling any type proceeds through 2
steps: __new__then _1nit__

* a good example of the Template Method and
Factory Design Patterns in action

© 2003 AB Strakt 12

ar- Calling a type: type.__call__
S
def __call__(cls,*a,**k):
nu = cls.__new__(cls, *a, **k)
1f 1sinstance(nu, cls):
cls.__1ni1t__(nu,*a, **k)
return nu

(An example of "2-phase construction)

© 2003 AB Strakt 13

a Custom metaclasses

= arbitrary callables w/right signature:
def M(N,b,d):

return d.get('f", '"%s')%N
class Ciao:

__metaclass_ =M

f = "*wow*%s!'
1s just like:
Ciao=M('Ciao',O),{'f": " "*wow*%s!'})
so, Ciao is a string: ' *wow*Ciao! '...!

© 2003 AB Strakt 14

—

a~ Canonical’ custom metaclasses

= hormally, a metaclass M, when called,
returns (a class that's) an instance of M

= just like any class: "normally, a class C,
when called, returns an instance of C"

= almost invariably, canonical custom
metaclasses are subclasses of type

= typically overriding some of __new___,
1init, __call__,

© 2003 AB Strakt 15

ar~ Cooperative metaclass behavior
= typically overrides of ew__,
qnit, __call__ ..., must
de1egate some cases to the

superclass (supermetaclass?)

=using type.__new__ (&c) 1s
simplest but not cooperative

» I generally use it in this presentation... due to
space limitations on slides!

= consider using super 1nstead!

© 2003 AB Strakt 16

&= Fundamentals of Python OO

= say type(x) 1s C, type(C) 1s M
= X.a looks in x, else C, not up into M

= operations look for special methods in
C only (not in x, not up into M)

= 'look in C" always implies C's own
dict/descriptors then up the sequence
of ancestor classes along C's MRO

© 2003 AB Strakt 17

ar- Custom metaclasses: why?

= 'deeper magic than 99% of users
should every worry about. If you
wonder whether you need them, you
don't" (Tim Peters)

= a bit pessimistic/extreme...
= worry Is misplaced, but...
= it Is an extra tool you might want...!

© 2003 AB Strakt 18

a~ Custom metaclasses: what for?

= hon-canonical uses

» whenever you'd like
N=M('N',atuple,adict) with adict
handily generated with assign &c...

e ...you could use class N: w/M as metaclass!
» neat hack but -- easy to abuse -- take care!

= what can be done only with a CMC
» special-methods behavior of the class itself

= what may best be done with a CMC
o particularly at class-creation/calling time
* may be simpler, faster, more general

© 2003 AB Strakt 19

ar- Easing canonical custom-MC use

= Name your metaclass 'metaSomething':
class metaxXXX(type):

def __new__(mcl,N,b,d):
e.g., alter d here
return type.__new__(mcl,N,b,d)
= define an auxiliary empty class:
class XXX: __metaclass__ = metaXXX

= NowW, classes can just inherit XXX:
class AnX(XxXxX): "...etc etc..."

© 2003 AB Strakt 20

5 Length-handicapped vrbl nms

= a metaclass is called with 3 args:
» Name of the class being instantiated
» tuple of Bases for said class
o dictionary with the class's attributes

= in the following, I'll write this as...:
class metaxXXX(type):
def __new__(mcl,N,b,d):

using mc 1 to stand for metac/ass (just like c1s for
class, self for ordinary object) -- not widely used
yet, but GvR likes it!-)

© 2003 AB Strakt 21

a~ A non-canonical custom MC

class metaProperty(object):
def __new__(mcl,N,b,d):
return property/(

d.get('get'), d.get('set'),
d.get('del'),
d.get('_doc__"') or
"Property %s' % N)

or, rather equivalently:

def metaProperty(N, b, D):

© 2003 AB Strakt 22

i Example use of metaProperty

class SomeClass(object):
class prop:
__metaclass__ = metaProperty
def get(self): return 23
mostly equivalent to:
def prop_get(self): return 23
prop = property(prop_get)
anobj = SomeClass()
print anobj.prop # prints 23

© 2003 AB Strakt 23

~+~ How come this doesn't work...?

class Property:
__metaclass__

metaProperty

class SomeClass(object):
class prop(Property):
def get(self): return 23

hint: what's type(Property)...?

© 2003 AB Strakt 24

a- A hack can make it work, e.g....:

class metaProperty(type):
def __new__(mcl,N,b,d):
1f N=="Property':
return type.__new__(mcl,N,b,d)
else:
return property(...etc...)

Must subclass type and return a true instance
of the metaclass for the auxiliary-class only

© 2003 AB Strakt 25

—

ar- ...0r, an even dirtier hack...:

class Property: pass
Property.__class__ = metaProperty

Just set the __class___ attribute of
(anything...) to the metaclass... (1)

Metaclass must be any new-style class, or, for
an even-dirtier sub-hack...:

def meta(N, b, d):
class Prop: pass
Prop.__class__=staticmethod(meta)

© 2003 AB Strakt 26

4= Behavior of the class object itself

class metaFramework(type):
def __repr__(cls):
return ("Framework class %r"
% cls.__name__)
__metaclass__ = metaFramework

class XX: pass
X = XX()
print type(x)

© 2003 AB Strakt 27

- _ Abstract Classes

class metaAbst(type):
def __call__(cls,*a,**k):
1f cls._abs:
raise TypeError,
return type. ca11__(
def __new__(mcl,N,b,d):
dl'_abs'] = (not b or not
1sinstance(b[0] ,metaAbst))
return type.__new__ (...

© 2003 AB Strakt 28

‘: Final Classes [1]

class metaFinal (type):
def __new__(mcl,N,b,d):
1f (b and
1sinstance(b[0] ,metaFinal)):
raise TypeError,
else:
return type.__new__(mcl,N,b,d)
unsuitable, as coded, for the
usual class MyCl(Final):

shortcut, of course

© 2003 AB Strakt 29

‘: Final Classes [2]

class metaFinal (type):
def __new__(mcl,N,b,d):
1f (b and
1sinstance(b[0],metaFinal) and
b[0O] 1s not Final):
raise TypeError,
else:
return type.__new__(mcl,N,b,d)
class Final:
__metaclass__ = metaFinal

© 2003 AB Strakt 30

a- Struct-like classes w/factory func

def struct(name, **flds):
class st(object): pass
st.__dict__.update(flds)
st._ _name__ = name
def __1nit__(self, **afs):
for n, v 1n afs.iteritems():
1f n not 1n flds: raise ...
setattr(self,n,v)
st._dict_['_init_"]=_1nit__
return st

© 2003 AB Strakt 31

&= Struct-like classes w/CMC [1]

reproducing the factory...:
class metaStruct(type):
def __new__(mcl, cnm, cbs, cdf):
def __init__(self, **afs):
for n, v in afs.iteritems():
1f n not 1n cdf: raise ...
setattr(self, n, v)
cdf['_1nit_"]=_1n1t__
return type.__new__(
mcl, cnm, cbs, cdf)

© 2003 AB Strakt 32

&= Struct-like classes w/CMC [2]

a metaclass allows even more...:
class metaStruct(type):
def __new__(mcl, cnm, cbs, cdf):
cdf['_slots__"'"] = cdf.keys()

def __1nit__(self, **afs):
ims=cdf.i1tems()+afs.1tems()

for n, v 1n ims:
setattr(self, n, v)
cdf['_1nit_"] = _1nit__

© 2003 AB Strakt 33

ac Struct-like classes w/CMC [3]
S—
def __repr__(self):
ps = []
for n, dv 1n cdf.iteritems():
v = setattr(self, n)
1f vi=dv: ps.append(repr(v))
return '%s.%s(%s)' % (
cdf['_module__"], cnm,
', .Join(ps))
cdf['_repr_"'] = __repr__

© 2003 AB Strakt 34

a~ Custom metaclasses and MI

= check in type.__new__(mc,N,b,d)
class M(type): pass
class N(type): pass
class m: __metaclass__
class n: __metaclass__
class x(m, n): pass

TypeError: netaclass conflict;
t he metacl ass of a derived
cl ass nust be a subcl ass. ..

© 2003 AB Strakt 35

M
N

ar~ Solving metaclass conflicts

= derive custom-metaclass as needed:
class MN(M,N): pass
class x(m,n): __metaclass__=MN

= in general, the derived metaclass must
solve actual special-method conflicts

= most typical/troublesome: __new___

= Forman and Danforth: "inheriting

metaclass constraints" (in theory,
automates the derivation process)

© 2003 AB Strakt 36

ar~ Advanced metaclass examples

_=———

= all from Forman and Danforth's book:
» re-dispatching
» before/after
e invariant-checking
o thread-safe

= if you're really keen on this -- get the
book...!

© 2003 AB Strakt 37

a: E.g.: metaTimeStamped [1]

A metaclass I can "plug into" already-
coded classes to make them timestamp
their instances at instance-creation:

class mTS(type):
def __call__(cls,*a,**k):
x=super(mTS,cls) (*a, **k)
X._created=time.time()
return X

© 2003 AB Strakt 38

y) TStamping w/an adjuster func

def addTS_to_class_i1nit(cls):
cinit = cls.__1n1t__
def 1nit(self,*a,**k):
cinit(self, *a, **k)
self._created=time.time()
cls.__1n1t__ = cinit
but, what 1f...: __slots__,
_created conflicts, ... ?

© 2003 AB Strakt 39

a: E.g.: metaTimeStamped [2]

def new__(mc,N,b,d):

snm '__slots__ '

cnm '_created’

sl = d.get(snm, (chm,))

1f cnm not 1n sl;:

dlsnm] = tuple(sl)+(cnm,)

1ns getCreated,property,...
return type.__new__(mc,N,b,d)

© 2003 AB Strakt 40

	Python Metaclasses
	This talk's audience...:
	what's a metaclass
	a key book...:
	the class statement
	Determining the metaclass [0]
	Determining the metaclass [1]
	Determining the metaclass [2]
	Determining the metaclass [3]
	Determining the metaclass [4]
	A subtlety w/types.ClassType
	When the metaclass is called...
	Calling a type: type.__call__
	Custom metaclasses
	"Canonical" custom metaclasses
	Cooperative metaclass behavior
	Fundamentals of Python OO
	Custom metaclasses: why?
	Custom metaclasses: what for?
	Easing canonical custom-MC use
	Length-handicapped vrbl nms
	A non-canonical custom MC
	Example use of metaProperty
	How come this doesn't work...?
	A hack can make it work, e.g....:
	...or, an even dirtier hack...:
	Behavior of the class object itself
	Abstract Classes
	Final Classes [1]
	Final Classes [2]
	Struct-like classes w/factory func
	Struct-like classes w/CMC [1]
	Struct-like classes w/CMC [2]
	Struct-like classes w/CMC [3]
	Custom metaclasses and MI
	Solving metaclass conflicts
	Advanced metaclass examples
	E.g.: metaTimeStamped [1]
	TStamping w/an adjusterfunc
	E.g.: metaTimeStamped [2]

