collaboration
people

Re-learning Python

Alex Martelli

© 2004 AB STRAKT

B s ol s audence__

you know, or used to know, s/thing about
Python 1.5.2 (or other Python < 2.2)

you're experienced programmers in some
other language[s] (I'm covering in 1h
about 2 days' worth of "normal" tutorials)

you'd like to understand whether it's
worth your while to re-learn Python
today, and what are the highlights

© 2004 AB STRAKT 2

h Python’s Progress

new for (months)

Ver.

1.5.2
2.0
2.1
2.2
2.3
(2.4

released

1999/04
2000/09
2001/04
2001/12
2003/07
2004/10?)

17
07
08
19
(15?)

stable
s/what stable
s/what stable
stable

very stable

© 2004 AB STRAKT

h Five years’ worth of goodies

= Unicode and codecs

= |ist comprehensions

= iterators and generators

" new classes, metaclasses, descriptors

" nested scopes

= ..."and a cast of thousands"...

= + |ots of library additions/enhancements

© 2004 AB STRAKT 4

Python Versions’ Stability

= revolutions 1.5.2—22.0—02.1-2.2
= stability 2.2—2.3

* only very minor language changes
 overall, ~3 years’ worth of stable experience
* focus on implementation speed, size, solidity
* (library does keep growing & getting better)

= ...net result...:

Never been readier for prime time!

© 2004 AB STRAKT 5

h Unicode and codecs

= unicode strings vs plain byte strings
* methods make them polymorphic

= encode/decode for string transforms

(including to/from Unicode/plain)
print 'ciao'.decode('rotl3')
pnvb

© 2004 AB STRAKT 6

h List comprehensions

L = [x*x for x in LL 1if x>0]
like, in set theory, {X*X | x€L., x>0} -- is just like...
L =1]
for x in LL:
i1f x>0:
L.append(x*Xx)

pluses: 1 thought =& 1 compact idiom
it's an expression...

© 2004 AB STRAKT 7

Iterators: in 1.5.2 ...

To allow looping with a for, one had to
sort-of-emulate a sequence...:

class 1terable:
def getitem (self, 1):
1f self.done():
raise IndexError
return self.next()
+ safeguards vs random-access, restart...

© 2004 AB STRAKT 8

h Iterators: since 2.2 ...

A class is iterable if it has a special method
___iter returning an iterator object:

class iterable:
def iter (self):
return my iter(self)

Each instance of the iterator class keeps
track of one iteration's state, returns self
from iter , hasamethod next

© 2004 AB STRAKT 9

h [terators: an iterator class

class myiter:

def 1init (self, ...):...
def i1ter (self):return self
def next(self):

[[...advance one step...]]

if [[it's finished]]:

raise Stoplteration
return [[the nextvalue]]

© 2004 AB STRAKT 10

h [terators: the for statement

for x in itrbl: body
Is now defined to be fully equivalent to:
_tmp = i1iter(itrbl)
while True:
try: x = tmp.next()
except StopIteration: break

body

© 2004 AB STRAKT |

h [terator example

class enumerate:
def __init__ (self, seq):
self.i = 0; self.seqit = iter(seq)
def __iter__ (self): return self
def next(self):
result = self.i, self.seqit.next()
selfi +=1
return result

© 2004 AB STRAKT 12

h Using enumerate

Rather than...:
for 1 i1n range(len(L)):
if L[i] > 23:
L[i] = L[i] - 12
we can code:
for 1, item in enumerate(L):
if item > 23:
L[1] = i1tem - 12

© 2004 AB STRAKT |3

functions containing new keyword yield
on call, build and return an iterator x

at each call to x.next (), function body
resumes executing until next time a
yield Or return execute

upon yield, X.next ()'s result is
yield's argument (ready to resume...)

upon return, raises StopIteration

© 2004 AB STRAKT | 4

h Generator example

def enumerate(seq):
1 =0
for item in seq:
yield 1, item
i +=1
(Note that enumerate is actually a built-in
in today's Python).

© 2004 AB STRAKT |5

h Nested scopes: in 1.5.2 ...

= just 3 scopes: local, global, built-ins
= we had to use the fake-default trick...:
def make adder(addend):
def f(augend, addend=addend):
return augend+addend

return £

One problem: f could erroneously be
called with 2 arguments

© 2004 AB STRAKT 16

h Nested scopes: since 2.1 ...

def make adder(addend):

def adder(augend):

return augend+addend

return adder
Access to variables from enclosing scope
is automatic (read-only! specifically: no re-
binding of names [mutation of objects is
no problem, scoping is about names]).

© 2004 AB STRAKT 17

1.5.2's object model had some issues...:

4 separate "kinds" of objects

types, classes, instances of classes, instances of types
no simple ways to mix / interchange them

"black magic" function =& method transformation
metaclasses: mind-blowing complexity
simplistic multiple-inheritance name resolution

they need to stay a while, for backwards
compatibility -- classic classes

but side by side, a new OM emerges

© 2004 AB STRAKT |18

h The class statement today

class X [bases] : [body]

= execute body to build dict d,

= find metaclass M and call (instantiate) it:

X = M('X', bases, d)

= bind the resulting object to the name
expected (not enforced): type(X) is M
—classes are instances of metaclasses

© 2004 AB STRAKT 19

"Find metaclass”, how?

= metaclass Inclass body
= inherited from leftmost base
= metaclass inglobals

= last-ditch default: types.ClassType
* NB: classic classes are still the last-ditch default

= all built-in types have metaclass type
= new built-in object: just about only that

© 2004 AB STRAKT 20

h Making a new-style class

= most usual way:
class X(object):
* (also OK: class X(list), &C)

* gives several new optional features wrt
classic classes

* one compatibility issue to watch out for:

* implicit special-method lookup is on the
class, not on the instance

© 2004 AB STRAKT 21

h Lookup of special methods

class sic: pass

def f£(): return 'foo
X=sic(); Xx. str =f; print X

class nu(object): pass
y=nu(); y. sStr = f; print y

= lookup always on class is more regular
and predictable (e.g. call)

© 2004 AB STRAKT 22

h Descriptors

= a class/type now holds descriptor objects

= each descriptor has get (may have
__set iff it's a data descriptor)

* "data descriptor" — has priority on instance dict
"x.y @ type(x).y. get (X)
lx.y=z—'type(X)-Y- Set_(X,Z)

= optionally also delete & doc

© 2004 AB STRAKT 23

Properties

class rect(object):

def 1nit (self,x,y):
self.x=x; self.y=y

def getArea(self):
return self.x*self.y

def setAtea(self, area):
self.y = float(area)/self.x

area=property(getArea,setArea)

© 2004 AB STRAKT 24

without properties, one might code many
accessor methods getThis, setThat...

"just in case" some attribute access should need to
trigger some code execution in some future version

accessors end up being 90+% boilerplate
"boilerplate code" is a very, very bad thing

with properties, always support natural,
plain x.this, x.that=23 syntax
can refactor attribute— property if ever needed

© 2004 AB STRAKT 25

h Functions are now descriptors

>>> def f(x, y): return x+y
>>> plus23 = f. get (23)

>>> print plus23(100)

123
>>>
= s0, the function = method

transformation has no "magic" any
more (follows from general rules)

© 2004 AB STRAKT 26

h staticmethod, classmethod

class
def

class
print
print

nu(object):

f(): return 'hey’
staticmethod(f)

g(cls): return 'ho%s'%cls
classmethod(g)

sb(nu): pass

nu.f(), nu.g(), nu().£()
sb.£(), sb.g(), sb().g()

© 2004 AB STRAKT

27

classmethod example

class dict:
def fks(cls, seq, val=None):
X = cls()
for kK 1n seq: x[k]=val
return X
fromkeys = classmethod(fks)
= actually part of builtin dict since 2.3
= an alternate ctor is a typical classmethod

© 2004 AB STRAKT 78

Method new

“ type. call (cls, *a, **k) NOW
operates through a simple "template
method" design pattern:

nu = cls. new (cls, *a, **k)

i1f isinstance(nu, cls):

cls. 1nit (nu, *a, **k)
return nu
= eases caching, singletons, ...

© 2004 AB STRAKT 29

h Subclassing (e.qg.) str

class ust(str):
def new (cls, val):

return str. new (cls,

val.upper())
=can'tdoitin init --that's too late,
since strings are immutable
= new makes it easy

© 2004 AB STRAKT 30

h Other new special methods

= diadd , imul , ...:optional "in-
place” methods to support +=, *=, ...

= unicode :like str

= floordiv_, truediv_ : like
__div__ but for trunc/nontrunc div's
= getattribute , contains

m eq , 1t , le ,

© 2004 AB STRAKT 31

Name resolution order: classic

clas sic:

def f(): return 'sic.f'
def g(): return 'sic.g’
class dl(sic):

def f(): return 'dl.f’
class d2(sic):

def g(): return 'd2.g’

class leaf(dl, d2): pass

© 2004 AB STRAKT 32

Name resolution order: new

clas nu(object):

def f£(): return 'nu.f’

def g(): return 'nu.g’
class dl(nu):

def f(): return 'dl.f’
class d2(nu):

def g(): return 'd2.g’
class leaf(dl, d2): pass

© 2004 AB STRAKT 33

h Cooperative super-delegation

class base(object): pass
class dl(base):
def 1nit (self, **k):
self.w = k.get('w'")
super(dl,self). 1init (**k)
= "steps upwards"” to next class in self's
__mro__ (name-resolution order)

© 2004 AB STRAKT 34

Custom metaclasses

= A rare need, but...:
class mymeta(type):
def new (c,n,b,d):
d.update(this and that)
~_(c¢,n,b,d)
class funky: metaclass =mymeta

= subclass type, override new -
quite typical custom metaclass traits

return type.

© 2004 AB STRAKT 35

normally, any class instance has a dict to
allow per-instance attributes

for tiny instances in great numbers (e.g.
points), that's a lot of memory

~_slots — no per-instance dicts, all
attribute names are listed right here

saves memory -- no other real use

© 2004 AB STRAKT 36

__slots___ example

class point(object):
__slots = 'x', 'y’
def 1nit (self, x, y):
self.x = x
self.y = vy
= subclass point and the per-instance dict
perks up again -- unless slots IS
defined at every level in the hierarchy

© 2004 AB STRAKT 37

h Augmented assignment

= a += b noOw means...:
= if type(a) has iadd |,
*a = type(a). 1add (a, b)
= otherwise,
a=a+b
= polymorphism between mutable and
immutable types

= watch out for "the performance trap"!

© 2004 AB STRAKT 38

h "The" performance trap

g = '

for subs in alotofsmallstrings:
s += subs

= unmitigated disaster O(N?) performance

= here's the optimal O(N) alternative:

s = ''.joln(alotofsmallstrings)

" s = sum(alotofsmallstrings)
would be disaster too (hence forbidden)

© 2004 AB STRAKT 39

...and a cast of thousands...

= GC

enhancements, weakref

* import/as, new import hooks, zipimport
= ¢r, zip, sum, int/long w/base, bool
= function attributes

= dic

S: setdefault, pop, **k, Iteration

= enhanced slices, 1ist.index start/stop

u stri
= file

ng enhancements: in, strip
enhancements: 'U"', iteration

© 2004 AB STRAKT 40

Ex: lines-by-word file index

build a map word->1list of line #s
idx = {}

for n, line in enumerate(file(fn,'U")):

for word in line.split():
idx.setdefault(word, []).append(n)
print in alphabetical order
words = idx.keys/()
words.sort ()
for word in words:

print word, idx[word]

© 2004 AB STRAKT 4]

Other examples of new stuff

" sys.path.append('modules.zip')
= import CGIHTTPServer as C

= for a, b i1n zip(Ll, L2):

= 1f 'der' in 'Cinderella’:

" for x 1n backwards[::-1]:

" print int('202221"','3")

" print sum([n*n for n in Ns])

" dbg=options.pop('dbg',False)

© 2004 AB STRAKT 4

B The ey (of Aendr)

Python's standard library has always
been rich ("batteries included")

grows richer and richer with time

thus (inevitably) some parts slowly get
deprecated to "make space” for new and
mode general ones

great 3rd party packages always
competing to get in as best-of-breed

© 2004 AB STRAKT 43

h New packages

= bsddb, curses (were modules)
= compiler, hotshot, idlelib

= encoding

" logging

= email

= xml

= warnings

= distutils

© 2004 AB STRAKT 44

Parsing, changing, writing XML

from xml.dom import minidom as M
doc = M.parse(foo in.xml')
cmt = doc.createComment (' 'hey! ')
doc.appendChild(cmt)
print>>file(foo out.xml', 'w'

), doc.toprettyxml(' '*4)

= SAX and pulldom also available (and
preferable for big documents)

© 2004 AB STRAKT 45

h Other new modules

= doctest, unittest, inspect, pydoc
= optparse, atexit, mmap

= tarfile, bz2, zipfile, zipimport

= datetime, timeit

= heapq, textwrap, gettext

= jtertools

= xmlrpc clients and servers

© 2004 AB STRAKT 46

B o support o nit st

doctest checks all examples in docstrings

unittest follows in Kent Beck's tradition
(see his "Test-driven development by
example" book: 1/3 is Python)

DocTestSuite allows piggybacking of
unitest on top of doctest

Python 2.3 comes with 60k lines of
Python source worth of unit tests

© 2004 AB STRAKT 47

pydoc and the help function

= leverage docstrings and introspection

>>> help(list)

Help on class list in module builtin_ :
class list(object)
| 1list() -> new list
list(seq) -> new list initialized from seq's items

Methods defined here:

X. add (y) <==> x+y

__contains_ (...)

|
|
|
|
| add (...)
|
|
|
| Xx. contains (y) <==> y in x

© 2004 AB STRAKT 48

timeit measures performance

S python timeit.py '{}'

100000 loops, best of 3: 1.24 usec per loop
S python timeit.py '{}.get(23)'’

100000 loops, best of 3: 3.27 usec per loop
S python timeit.py '{}.setdefault(23)’
100000 loops, best of 3: 3.7 usec per loop

—create & recycle empty dict: 1.24 ps
—+get method call: 2.03 ps more
—setdefault: other 0.43 ps on top

© 2004 AB STRAKT 49

h Enhancements to modules

= time.strptime: pure portable Python
= random.sample; Mersenne Twister
= socket: supports IPv6, SSL, timeout
= UserDict: DictMixin

= array: Unicode support

= pickle: new protocol

= shelve: new safe/writeback mode

© 2004 AB STRAKT 50

collaboration

AMK's "What's New in Python" summaries:

http://www.amk.ca/python/

GVR essay about the new object-model:

http://www.python.org/2.2/descrintro.html
AM, DA, ML, MLH, and many others, on all of this...:

Python in a Nutshell, Learning Python,

The Python Cookbook, Practical Python

AM, JH on iterators, generators, metaclasses, ...:
http://www.strakt.com

© 2004 AB STRAKT 51

