
© 2004 AB STRAKT
STRAKT

business

collaboration

 people

1

Re-learning Python

• Alex Martelli

© 2004 AB STRAKT
STRAKT

2

This talk & its audience
 you know, or used to know, s/thing about

Python 1.5.2 (or other Python < 2.2)
 you're experienced programmers in some

other language[s] (I'm covering in 1h
about 2 days' worth of "normal" tutorials)

 you'd like to understand whether it's
worth your while to re-learn Python
today, and what are the highlights

© 2004 AB STRAKT
STRAKT

3

Python’s Progress
Ver. released new for (months)

1.5.2 1999/04 17 stable

2.0 2000/09 07 s/what stable

2.1 2001/04 08 s/what stable

2.2 2001/12 19 stable

2.3 2003/07 (15?) very stable

(2.4 2004/10?)

© 2004 AB STRAKT
STRAKT

4

Five years’ worth of goodies
 Unicode and codecs
 list comprehensions
 iterators and generators
 new classes, metaclasses, descriptors
 nested scopes
 ...“and a cast of thousands”...
 + lots of library additions/enhancements

© 2004 AB STRAKT
STRAKT

5

Python Versions’ Stability
 revolutions 1.5.2→2.0→2.1→2.2
 stability 2.2→2.3

• only very minor language changes
• overall, ~3 years’ worth of stable experience
• focus on implementation speed, size, solidity
• (library does keep growing & getting better)

 ...net result...:

Never been readier for prime time!

© 2004 AB STRAKT
STRAKT

6

Unicode and codecs
 unicode strings vs plain byte strings

• methods make them polymorphic
 encode/decode for string transforms

(including to/from Unicode/plain)
print 'ciao'.decode('rot13')
pnvb

© 2004 AB STRAKT
STRAKT

7

List comprehensions
L = [x*x for x in LL if x>0]
like, in set theory, {x*x | x∈L, x>0} -- is just like...:

L = []
for x in LL:
 if x>0:
 L.append(x*x)
pluses: 1 thought → 1 compact idiom
 it's an expression...

© 2004 AB STRAKT
STRAKT

8

Iterators: in 1.5.2 ...
To allow looping with a for, one had to
sort-of-emulate a sequence...:
class iterable:
 def __getitem__(self, i):
 if self.done():
 raise IndexError
 return self.next()
+ safeguards vs random-access, restart...

© 2004 AB STRAKT
STRAKT

9

Iterators: since 2.2 ...

A class is iterable if it has a special method
__iter__ returning an iterator object:
class iterable:
 def __iter__(self):
 return my_iter(self)
Each instance of the iterator class keeps
track of one iteration's state, returns self
from __iter__, has a method next

© 2004 AB STRAKT
STRAKT

10

Iterators: an iterator class
class myiter:
 def __init__(self, ...):...
 def __iter__(self):return self
 def next(self):
 [[...advance one step...]]
 if [[it's finished]]:
 raise StopIteration
 return [[the next value]]

© 2004 AB STRAKT
STRAKT

11

Iterators: the for statement
for x in itrbl: body

is now defined to be fully equivalent to:
_tmp = iter(itrbl)
while True:
 try: x = _tmp.next()
 except StopIteration: break
 body

© 2004 AB STRAKT
STRAKT

12

Iterator example
class enumerate:
 def __init__(self, seq):
 self.i = 0; self.seqit = iter(seq)
 def __iter__(self): return self
 def next(self):
 result = self.i, self.seqit.next()
 self.i += 1
 return result

© 2004 AB STRAKT
STRAKT

13

Using enumerate
Rather than...:
for i in range(len(L)):
 if L[i] > 23:
 L[i] = L[i] - 12
we can code:
for i, item in enumerate(L):
 if item > 23:
 L[i] = item - 12

© 2004 AB STRAKT
STRAKT

14

Simple generators
 functions containing new keyword yield
 on call, build and return an iterator x
 at each call to x.next(), function body

resumes executing until next time a
yield or return execute

 upon yield, x.next()'s result is
yield's argument (ready to resume...)

 upon return, raises StopIteration

© 2004 AB STRAKT
STRAKT

15

Generator example
def enumerate(seq):
 i = 0
 for item in seq:
 yield i, item
 i += 1
(Note that enumerate is actually a built-in
in today's Python).

© 2004 AB STRAKT
STRAKT

16

Nested scopes: in 1.5.2 ...
 just 3 scopes: local, global, built-ins
 we had to use the fake-default trick...:
def make_adder(addend):
 def f(augend, addend=addend):
 return augend+addend
 return f
One problem: f could erroneously be
called with 2 arguments

© 2004 AB STRAKT
STRAKT

17

Nested scopes: since 2.1 ...
def make_adder(addend):
 def adder(augend):
 return augend+addend
 return adder
Access to variables from enclosing scope
is automatic (read-only! specifically: no re-
binding of names [mutation of objects is
no problem, scoping is about names]).

© 2004 AB STRAKT
STRAKT

18

A new object-model
 1.5.2's object model had some issues...:

• 4 separate "kinds" of objects
 types, classes, instances of classes, instances of types
 no simple ways to mix / interchange them

• "black magic" function → method transformation
• metaclasses: mind-blowing complexity
• simplistic multiple-inheritance name resolution

 they need to stay a while, for backwards
compatibility -- classic classes

 but side by side, a new OM emerges

© 2004 AB STRAKT
STRAKT

19

The class statement today
class X [bases] : [body]
 execute body to build dict d,
 find metaclass M and call (instantiate) it:
X = M('X', bases, d)
 bind the resulting object to the name
expected (not enforced): type(X) is M
→classes are instances of metaclasses

© 2004 AB STRAKT
STRAKT

20

"Find metaclass", how?
 __metaclass__ in class body
 inherited from leftmost base
 __metaclass__ in globals
 last-ditch default: types.ClassType

• NB: classic classes are still the last-ditch default

 all built-in types have metaclass type
 new built-in object: just about only that

© 2004 AB STRAKT
STRAKT

21

Making a new-style class
 most usual way:

class X(object): ...
• (also OK: class X(list), &c)

• gives several new optional features wrt
classic classes

• one compatibility issue to watch out for:
• implicit special-method lookup is on the

class, not on the instance

© 2004 AB STRAKT
STRAKT

22

Lookup of special methods
class sic: pass
def f(): return 'foo'
x=sic(); x.__str__=f; print x

class nu(object): pass
y=nu(); y.__str__ = f; print y

 lookup always on class is more regular
and predictable (e.g. __call__)

© 2004 AB STRAKT
STRAKT

23

Descriptors
 a class/type now holds descriptor objects
 each descriptor has __get__ (may have
__set__ iff it's a data descriptor)
• "data descriptor" → has priority on instance dict

 x.y → type(x).y.__get__(x)
 x.y=z → type(x).y.__set__(x,z)
 optionally also __delete__ & __doc__

© 2004 AB STRAKT
STRAKT

24

Properties
class rect(object):
 def __init__(self,x,y):
 self.x=x; self.y=y
 def getArea(self):
 return self.x*self.y
 def setAtea(self, area):
 self.y = float(area)/self.x
 area=property(getArea,setArea)

© 2004 AB STRAKT
STRAKT

25

why properties matter a lot
 without properties, one might code many

accessor methods getThis, setThat...
• "just in case" some attribute access should need to

trigger some code execution in some future version
 accessors end up being 90+% boilerplate

• "boilerplate code" is a very, very bad thing
 with properties, always support natural,

plain x.this, x.that=23 syntax
• can refactor attribute→property if ever needed

© 2004 AB STRAKT
STRAKT

26

Functions are now descriptors
>>> def f(x, y): return x+y
>>> plus23 = f.__get__(23)
>>> print plus23(100)
123
>>>
 so, the function → method

transformation has no "magic" any
more (follows from general rules)

© 2004 AB STRAKT
STRAKT

27

staticmethod, classmethod
class nu(object):
 def f(): return 'hey'
 f = staticmethod(f)
 def g(cls): return 'ho%s'%cls
 g = classmethod(g)
class sb(nu): pass
print nu.f(), nu.g(), nu().f()
print sb.f(), sb.g(), sb().g()

© 2004 AB STRAKT
STRAKT

28

classmethod example
class dict:
 def _fks(cls, seq, val=None):
 x = cls()
 for k in seq: x[k]=val
 return x
 fromkeys = classmethod(_fks)
 actually part of builtin dict since 2.3
 an alternate ctor is a typical classmethod

© 2004 AB STRAKT
STRAKT

29

Method __new__
 type.__call__(cls, *a, **k) now

operates through a simple "template
method" design pattern:

nu = cls.__new__(cls, *a, **k)
if isinstance(nu, cls):
 cls.__init__(nu, *a, **k)
return nu
 eases caching, singletons, ...

© 2004 AB STRAKT
STRAKT

30

Subclassing (e.g.) str
class ust(str):
 def __new__(cls, val):
 return str.__new__(cls,
 val.upper())
 can't do it in __init__ -- that's too late,

since strings are immutable
 __new__ makes it easy

© 2004 AB STRAKT
STRAKT

31

Other new special methods
 __iadd__, __imul__, ...: optional "in-

place" methods to support +=, *=, ...
 __unicode__: like __str__
 __floordiv__, __truediv__: like
__div__ but for trunc/nontrunc div's

 __getattribute__,__contains__
 __eq__, __lt_, __le__, ...

© 2004 AB STRAKT
STRAKT

32

Name resolution order: classic
clas sic:
 def f(): return 'sic.f'
 def g(): return 'sic.g'
class d1(sic):
 def f(): return 'd1.f'
class d2(sic):
 def g(): return 'd2.g'
class leaf(d1, d2): pass

© 2004 AB STRAKT
STRAKT

33

Name resolution order: new
clas nu(object):
 def f(): return 'nu.f'
 def g(): return 'nu.g'
class d1(nu):
 def f(): return 'd1.f'
class d2(nu):
 def g(): return 'd2.g'
class leaf(d1, d2): pass

© 2004 AB STRAKT
STRAKT

34

Cooperative super-delegation
class base(object): pass
class d1(base):
 def __init__(self, **k):
 self.w = k.get('w')
 super(d1,self).__init__(**k)
 "steps upwards" to next class in self's
__mro__ (name-resolution order)

© 2004 AB STRAKT
STRAKT

35

Custom metaclasses
 A rare need, but...:
class mymeta(type):
 def __new__(c,n,b,d):
 d.update(this_and_that)
 return type.__new__(c,n,b,d)
class funky:__metaclass__=mymeta
 subclass type, override __new__ →

quite typical custom metaclass traits

© 2004 AB STRAKT
STRAKT

36

__slots__
 normally, any class instance has a dict to

allow per-instance attributes
 for tiny instances in great numbers (e.g.

points), that's a lot of memory
 __slots__ → no per-instance dicts, all

attribute names are listed right here
 saves memory -- no other real use

© 2004 AB STRAKT
STRAKT

37

__slots__ example
class point(object):
 __slots__ = 'x', 'y'
 def __init__(self, x, y):
 self.x = x
 self.y = y
 subclass point and the per-instance dict

perks up again -- unless __slots__ is
defined at every level in the hierarchy

© 2004 AB STRAKT
STRAKT

38

Augmented assignment
 a += b now means...:
 if type(a) has __iadd__,
• a = type(a).__iadd__(a, b)

 otherwise,
• a = a + b

 polymorphism between mutable and
immutable types

 watch out for "the performance trap"!

© 2004 AB STRAKT
STRAKT

39

"The" performance trap
s = ''
for subs in alotofsmallstrings:
 s += subs
 unmitigated disaster O(N²) performance
 here's the optimal O(N) alternative:
s = ''.join(alotofsmallstrings)
 s = sum(alotofsmallstrings)

would be disaster too (hence forbidden)

© 2004 AB STRAKT
STRAKT

40

...and a cast of thousands...
 GC enhancements, weakref
 import/as, new import hooks, zipimport
 %r, zip, sum, int/long w/base, bool
 function attributes
 dicts: setdefault, pop, **k, iteration
 enhanced slices, list.index start/stop
 string enhancements: in, strip
 file enhancements: 'U', iteration

© 2004 AB STRAKT
STRAKT

41

Ex: lines-by-word file index
build a map word->list of line #s
idx = {}
for n, line in enumerate(file(fn,'U')):
 for word in line.split():
 idx.setdefault(word, []).append(n)
print in alphabetical order
words = idx.keys()
words.sort()
for word in words:
 print word, idx[word]

© 2004 AB STRAKT
STRAKT

42

Other examples of new stuff
 sys.path.append('modules.zip')
 import CGIHTTPServer as C
 for a, b in zip(L1, L2): ...
 if 'der' in 'Cinderella': ...
 for x in backwards[::-1]: ...
 print int('202221','3')
 print sum([n*n for n in Ns])
 dbg=options.pop('dbg',False)

© 2004 AB STRAKT
STRAKT

43

The Library (of Alexandria?-)
 Python's standard library has always

been rich ("batteries included")
 grows richer and richer with time
 thus (inevitably) some parts slowly get

deprecated to "make space" for new and
mode general ones

 great 3rd party packages always
competing to get in as best-of-breed

© 2004 AB STRAKT
STRAKT

44

New packages
 bsddb, curses (were modules)
 compiler, hotshot, idlelib
 encoding
 logging
 email
 xml
 warnings
 distutils

© 2004 AB STRAKT
STRAKT

45

Parsing, changing, writing XML
from xml.dom import minidom as M
doc = M.parse('foo_in.xml')
cmt = doc.createComment('hey!')
doc.appendChild(cmt)
print>>file('foo_out.xml','w'
), doc.toprettyxml(' '*4)
 SAX and pulldom also available (and

preferable for big documents)

© 2004 AB STRAKT
STRAKT

46

Other new modules
 doctest, unittest, inspect, pydoc
 optparse, atexit, mmap
 tarfile, bz2, zipfile, zipimport
 datetime, timeit
 heapq, textwrap, gettext
 itertools
 xmlrpc clients and servers

© 2004 AB STRAKT
STRAKT

47

Strong support for unit testing
 doctest checks all examples in docstrings
 unittest follows in Kent Beck's tradition

(see his "Test-driven development by
example" book: 1/3 is Python)

 DocTestSuite allows piggybacking of
unitest on top of doctest

 Python 2.3 comes with 60k lines of
Python source worth of unit tests

© 2004 AB STRAKT
STRAKT

48

pydoc and the help function
 leverage docstrings and introspection
>>> help(list)
Help on class list in module __builtin__:
class list(object)
 | list() -> new list
 | list(seq) -> new list initialized from seq's items
 |
 | Methods defined here:
 |
 | __add__(...)
 | x.__add__(y) <==> x+y
 |
 | __contains__(...)
 | x.__contains__(y) <==> y in x

© 2004 AB STRAKT
STRAKT

49

timeit measures performance
$ python timeit.py '{}'
100000 loops, best of 3: 1.24 usec per loop
$ python timeit.py '{}.get(23)'
100000 loops, best of 3: 3.27 usec per loop
$ python timeit.py '{}.setdefault(23)'
100000 loops, best of 3: 3.7 usec per loop

→create & recycle empty dict: 1.24 μs
→get method call: 2.03 μs more
→setdefault: other 0.43 μs on top

© 2004 AB STRAKT
STRAKT

50

Enhancements to modules
 time.strptime: pure portable Python
 random.sample; Mersenne Twister
 socket: supports IPv6, SSL, timeout
 UserDict: DictMixin
 array: Unicode support
 pickle: new protocol
 shelve: new safe/writeback mode
 ...

© 2004 AB STRAKT
STRAKT

business

collaboration

 people

5151

AMK's "What's New in Python" summaries:

 http://www.amk.ca/python/
GvR essay about the new object-model:

 http://www.python.org/2.2/descrintro.html
AM, DA, ML, MLH, and many others, on all of this...:
 Python in a Nutshell, Learning Python,
 The Python Cookbook, Practical Python
AM, JH on iterators, generators, metaclasses, ...:

 http://www.strakt.com

